广角高分辨率SAR成像与民用车辆鲁棒自动目标识别

Deoksu Lim, Luzhou Xu, Yijun Sun, Jian Li
{"title":"广角高分辨率SAR成像与民用车辆鲁棒自动目标识别","authors":"Deoksu Lim, Luzhou Xu, Yijun Sun, Jian Li","doi":"10.14355/IJRSA.2014.0404.02","DOIUrl":null,"url":null,"abstract":"This paper focuses on wide-angle synthetic aperture radar (SAR) imaging and automatic target recognition of civilian vehicles. A recently proposed hybrid data adaptive method is applied to generate accurate and sparse SAR images of civilian vehicles. We combine projection slice theorem (PST) with 2-D FFT to obtain a more accurate pose estimation than the established PST. Given the so-obtained pose estimates, the horizontal and vertical cumulative-sum-vector (CSV) profiles are utilized to focus the SAR image only on the vehicle of current interest. The corresponding vertical CSV is used as a simple feature for automatic target recognition (ATR). We adopt the local learning based feature selection for ATR. The effectiveness of the entire chain of imaging, pose estimation, feature extraction, and ATR methods is verified using the experimentation results based on the publicly available GOTCHA SAR data set. We demonstrate that the high resolution SAR imaging results in much improved ATR performance compared to the conventional SAR imaging.","PeriodicalId":219241,"journal":{"name":"International Journal of Remote Sensing Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Wide-Angle High Resolution SAR Imaging and Robust Automatic Target Recognition of Civilian Vehicles\",\"authors\":\"Deoksu Lim, Luzhou Xu, Yijun Sun, Jian Li\",\"doi\":\"10.14355/IJRSA.2014.0404.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on wide-angle synthetic aperture radar (SAR) imaging and automatic target recognition of civilian vehicles. A recently proposed hybrid data adaptive method is applied to generate accurate and sparse SAR images of civilian vehicles. We combine projection slice theorem (PST) with 2-D FFT to obtain a more accurate pose estimation than the established PST. Given the so-obtained pose estimates, the horizontal and vertical cumulative-sum-vector (CSV) profiles are utilized to focus the SAR image only on the vehicle of current interest. The corresponding vertical CSV is used as a simple feature for automatic target recognition (ATR). We adopt the local learning based feature selection for ATR. The effectiveness of the entire chain of imaging, pose estimation, feature extraction, and ATR methods is verified using the experimentation results based on the publicly available GOTCHA SAR data set. We demonstrate that the high resolution SAR imaging results in much improved ATR performance compared to the conventional SAR imaging.\",\"PeriodicalId\":219241,\"journal\":{\"name\":\"International Journal of Remote Sensing Applications\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Remote Sensing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14355/IJRSA.2014.0404.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Remote Sensing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14355/IJRSA.2014.0404.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文主要研究民用车辆广角合成孔径雷达(SAR)成像与自动目标识别。提出了一种混合数据自适应方法,用于生成精确、稀疏的民用车辆SAR图像。我们将投影切片定理(PST)与二维FFT相结合,得到了比已有的PST更精确的姿态估计。给定得到的姿态估计,利用水平和垂直累积和矢量(CSV)剖面将SAR图像仅聚焦在当前感兴趣的车辆上。相应的垂直CSV用作自动目标识别(ATR)的简单特征。我们采用基于局部学习的ATR特征选择。利用基于公开可用的GOTCHA SAR数据集的实验结果,验证了整个成像链、姿态估计、特征提取和ATR方法的有效性。我们证明,与传统的SAR成像相比,高分辨率的SAR成像结果大大提高了ATR性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wide-Angle High Resolution SAR Imaging and Robust Automatic Target Recognition of Civilian Vehicles
This paper focuses on wide-angle synthetic aperture radar (SAR) imaging and automatic target recognition of civilian vehicles. A recently proposed hybrid data adaptive method is applied to generate accurate and sparse SAR images of civilian vehicles. We combine projection slice theorem (PST) with 2-D FFT to obtain a more accurate pose estimation than the established PST. Given the so-obtained pose estimates, the horizontal and vertical cumulative-sum-vector (CSV) profiles are utilized to focus the SAR image only on the vehicle of current interest. The corresponding vertical CSV is used as a simple feature for automatic target recognition (ATR). We adopt the local learning based feature selection for ATR. The effectiveness of the entire chain of imaging, pose estimation, feature extraction, and ATR methods is verified using the experimentation results based on the publicly available GOTCHA SAR data set. We demonstrate that the high resolution SAR imaging results in much improved ATR performance compared to the conventional SAR imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信