Heejin Shin, Sunyoung Park, Hyunsoo Kim, Inbeom Yang
{"title":"插电式混合动力汽车座舱加热一体化能源管理策略的开发","authors":"Heejin Shin, Sunyoung Park, Hyunsoo Kim, Inbeom Yang","doi":"10.1109/EVER.2015.7113009","DOIUrl":null,"url":null,"abstract":"In this study, an integrated powertrain-thermal energy management strategy (IEMS) was proposed for a power-split type plug-in hybrid electric vehicle. Dynamic models of the powertrain components including the engine, motor/generator, power-split transmission and battery were obtained with a thermal management system consisting of an engine (thermal part), radiator, positive temperature coefficient (PTC) heater, heater core and cabin. Using the powertrain and thermal management system model, a performance simulator was developed and simulation results of the powertrain components, engine coolant temperature and the cabin temperature were compared with the vehicle dynamometer test results. Based on the powertrain and thermal management system characteristics, an IEMS was proposed that considers not only the battery SOC, but also the ratio of PTC heater power consumption to battery power consumption. The simulation results of the IEMS were compared with the existing energy management strategy (EMS) and the IEMS improved fuel economy over EMS.","PeriodicalId":169529,"journal":{"name":"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of an integrated energy management strategy with cabin heating for plug-in hybrid electric vehicle\",\"authors\":\"Heejin Shin, Sunyoung Park, Hyunsoo Kim, Inbeom Yang\",\"doi\":\"10.1109/EVER.2015.7113009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an integrated powertrain-thermal energy management strategy (IEMS) was proposed for a power-split type plug-in hybrid electric vehicle. Dynamic models of the powertrain components including the engine, motor/generator, power-split transmission and battery were obtained with a thermal management system consisting of an engine (thermal part), radiator, positive temperature coefficient (PTC) heater, heater core and cabin. Using the powertrain and thermal management system model, a performance simulator was developed and simulation results of the powertrain components, engine coolant temperature and the cabin temperature were compared with the vehicle dynamometer test results. Based on the powertrain and thermal management system characteristics, an IEMS was proposed that considers not only the battery SOC, but also the ratio of PTC heater power consumption to battery power consumption. The simulation results of the IEMS were compared with the existing energy management strategy (EMS) and the IEMS improved fuel economy over EMS.\",\"PeriodicalId\":169529,\"journal\":{\"name\":\"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EVER.2015.7113009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2015.7113009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of an integrated energy management strategy with cabin heating for plug-in hybrid electric vehicle
In this study, an integrated powertrain-thermal energy management strategy (IEMS) was proposed for a power-split type plug-in hybrid electric vehicle. Dynamic models of the powertrain components including the engine, motor/generator, power-split transmission and battery were obtained with a thermal management system consisting of an engine (thermal part), radiator, positive temperature coefficient (PTC) heater, heater core and cabin. Using the powertrain and thermal management system model, a performance simulator was developed and simulation results of the powertrain components, engine coolant temperature and the cabin temperature were compared with the vehicle dynamometer test results. Based on the powertrain and thermal management system characteristics, an IEMS was proposed that considers not only the battery SOC, but also the ratio of PTC heater power consumption to battery power consumption. The simulation results of the IEMS were compared with the existing energy management strategy (EMS) and the IEMS improved fuel economy over EMS.