俄罗斯货运航班时间预测

I. Makarov
{"title":"俄罗斯货运航班时间预测","authors":"I. Makarov","doi":"10.1109/CAIS.2019.8769522","DOIUrl":null,"url":null,"abstract":"We present a model for freight train time prediction based on station network analysis and specific feature engineering. We discuss the first pipeline to improve the freight flight duration prediction in Russia. While every freight company use only reference book made by RZD (Russian Railways) based on railroad distances with accuracy measured in days, we argue that one could predict the flight duration with error less than twenty hours while decreasing error to twelve hours for certain type of freight trains.","PeriodicalId":220129,"journal":{"name":"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Russian Freight Flights Time Prediction\",\"authors\":\"I. Makarov\",\"doi\":\"10.1109/CAIS.2019.8769522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a model for freight train time prediction based on station network analysis and specific feature engineering. We discuss the first pipeline to improve the freight flight duration prediction in Russia. While every freight company use only reference book made by RZD (Russian Railways) based on railroad distances with accuracy measured in days, we argue that one could predict the flight duration with error less than twenty hours while decreasing error to twelve hours for certain type of freight trains.\",\"PeriodicalId\":220129,\"journal\":{\"name\":\"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIS.2019.8769522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Computer Applications & Information Security (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIS.2019.8769522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于车站网络分析和具体特征工程的货运列车时间预测模型。我们讨论了第一条管道,以改进俄罗斯的货运飞行时间预测。虽然每个货运公司只使用RZD(俄罗斯铁路公司)制作的参考书,以铁路距离为基础,以天为单位测量精度,但我们认为,对于某些类型的货运列车,可以预测误差小于20小时的飞行时间,同时将误差降低到12小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Russian Freight Flights Time Prediction
We present a model for freight train time prediction based on station network analysis and specific feature engineering. We discuss the first pipeline to improve the freight flight duration prediction in Russia. While every freight company use only reference book made by RZD (Russian Railways) based on railroad distances with accuracy measured in days, we argue that one could predict the flight duration with error less than twenty hours while decreasing error to twelve hours for certain type of freight trains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信