基于方块传播的分段算法

Вячеслав Данилов, V. Danilov, Игорь Скирневский, I. Skirnevskiy, Роман Манаков, R. Manakov, Дмитрий Колпащиков, D. Kolpashchikov, Ольга Гергет, O. Gerget
{"title":"基于方块传播的分段算法","authors":"Вячеслав Данилов, V. Danilov, Игорь Скирневский, I. Skirnevskiy, Роман Манаков, R. Manakov, Дмитрий Колпащиков, D. Kolpashchikov, Ольга Гергет, O. Gerget","doi":"10.30987/graphicon-2019-2-148-154","DOIUrl":null,"url":null,"abstract":"This research is devoted to the segmentation of heart and brain anatomical structures. In the study, we present a segmentation algorithm based on the square blocks (superpixels) propagation. The square blocks propagation algorithm checks two criteria. For the first criteria, the current intensity of the pixel is compared to the average intensity of the segmented region. For the second criterion, the intensity difference of the pixels lying on the superpixel sides is compared to the threshold. Once these criteria are successfully checked, the algorithm merges homogeneous superpixels into one region. Then the following superpixels are attached to the final superpixel set. The last step of the proposed method is the spline generation. The spline delineates the borders of the region of interest. The main parameter of the algorithm is the size of a square block. The cardiac MRI dataset of the University of York and the brain tumor dataset of Southern Medical University were used to estimate the segmentation accuracy and processing time. The highest Dice similarity coefficients obtained by the presented algorithm for the left ventricle and the brain tumor are 0.93±0.03 and 0.89±0.07 respectively. One of the most important features of the border detection step is its scalability. It allows implementing different one-dimensional methods for border detection.","PeriodicalId":409819,"journal":{"name":"GraphiCon'2019 Proceedings. Volume 2","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Segmentation Algorithm Based on Square Blocks Propagation\",\"authors\":\"Вячеслав Данилов, V. Danilov, Игорь Скирневский, I. Skirnevskiy, Роман Манаков, R. Manakov, Дмитрий Колпащиков, D. Kolpashchikov, Ольга Гергет, O. Gerget\",\"doi\":\"10.30987/graphicon-2019-2-148-154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research is devoted to the segmentation of heart and brain anatomical structures. In the study, we present a segmentation algorithm based on the square blocks (superpixels) propagation. The square blocks propagation algorithm checks two criteria. For the first criteria, the current intensity of the pixel is compared to the average intensity of the segmented region. For the second criterion, the intensity difference of the pixels lying on the superpixel sides is compared to the threshold. Once these criteria are successfully checked, the algorithm merges homogeneous superpixels into one region. Then the following superpixels are attached to the final superpixel set. The last step of the proposed method is the spline generation. The spline delineates the borders of the region of interest. The main parameter of the algorithm is the size of a square block. The cardiac MRI dataset of the University of York and the brain tumor dataset of Southern Medical University were used to estimate the segmentation accuracy and processing time. The highest Dice similarity coefficients obtained by the presented algorithm for the left ventricle and the brain tumor are 0.93±0.03 and 0.89±0.07 respectively. One of the most important features of the border detection step is its scalability. It allows implementing different one-dimensional methods for border detection.\",\"PeriodicalId\":409819,\"journal\":{\"name\":\"GraphiCon'2019 Proceedings. Volume 2\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GraphiCon'2019 Proceedings. Volume 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30987/graphicon-2019-2-148-154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GraphiCon'2019 Proceedings. Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/graphicon-2019-2-148-154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项研究致力于心脏和大脑解剖结构的分割。在研究中,我们提出了一种基于方块(超像素)传播的分割算法。方块传播算法检查两个标准。第一个标准是将像素的当前强度与分割区域的平均强度进行比较。第二个标准是将位于超像素两侧的像素的强度差与阈值进行比较。一旦成功检查了这些标准,算法就会将同质的超像素合并为一个区域。然后,下面的超像素会被附加到最终的超像素集中。建议方法的最后一步是生成样条线。样条线勾勒出感兴趣区域的边界。算法的主要参数是方形块的大小。约克大学的心脏 MRI 数据集和南方医科大学的脑肿瘤数据集被用来估算分割精度和处理时间。该算法对左心室和脑肿瘤获得的最高 Dice 相似系数分别为 0.93±0.03 和 0.89±0.07。边界检测步骤最重要的特点之一是其可扩展性。它允许采用不同的一维方法进行边界检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation Algorithm Based on Square Blocks Propagation
This research is devoted to the segmentation of heart and brain anatomical structures. In the study, we present a segmentation algorithm based on the square blocks (superpixels) propagation. The square blocks propagation algorithm checks two criteria. For the first criteria, the current intensity of the pixel is compared to the average intensity of the segmented region. For the second criterion, the intensity difference of the pixels lying on the superpixel sides is compared to the threshold. Once these criteria are successfully checked, the algorithm merges homogeneous superpixels into one region. Then the following superpixels are attached to the final superpixel set. The last step of the proposed method is the spline generation. The spline delineates the borders of the region of interest. The main parameter of the algorithm is the size of a square block. The cardiac MRI dataset of the University of York and the brain tumor dataset of Southern Medical University were used to estimate the segmentation accuracy and processing time. The highest Dice similarity coefficients obtained by the presented algorithm for the left ventricle and the brain tumor are 0.93±0.03 and 0.89±0.07 respectively. One of the most important features of the border detection step is its scalability. It allows implementing different one-dimensional methods for border detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信