{"title":"耐抗生素金黄色葡萄球菌","authors":"Arun Kumar Parthasarathy, Roma A. Chougale","doi":"10.5772/intechopen.100057","DOIUrl":null,"url":null,"abstract":"Staphylococcus is an adaptable pathogen and leads to rapid development of antibiotic resistance. The major targets for antibiotics are (i) the cell wall, (ii) the ribosome and (iii) nucleic acids. Resistance can either develop intrinsically or extrinsically via horizontal gene transfer, drug site modification, and efflux pumps etc. This review focuses on development of resistance to currently used antibiotics in Staphylococcal infection, novel therapeutic approaches resistance pattern of antibiotics and also the future prospectus for new antibiotics usage.","PeriodicalId":250695,"journal":{"name":"Insights Into Drug Resistance in Staphylococcus aureus","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Antibiotic Resistant Staphylococcus aureus\",\"authors\":\"Arun Kumar Parthasarathy, Roma A. Chougale\",\"doi\":\"10.5772/intechopen.100057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Staphylococcus is an adaptable pathogen and leads to rapid development of antibiotic resistance. The major targets for antibiotics are (i) the cell wall, (ii) the ribosome and (iii) nucleic acids. Resistance can either develop intrinsically or extrinsically via horizontal gene transfer, drug site modification, and efflux pumps etc. This review focuses on development of resistance to currently used antibiotics in Staphylococcal infection, novel therapeutic approaches resistance pattern of antibiotics and also the future prospectus for new antibiotics usage.\",\"PeriodicalId\":250695,\"journal\":{\"name\":\"Insights Into Drug Resistance in Staphylococcus aureus\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insights Into Drug Resistance in Staphylococcus aureus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.100057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights Into Drug Resistance in Staphylococcus aureus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Staphylococcus is an adaptable pathogen and leads to rapid development of antibiotic resistance. The major targets for antibiotics are (i) the cell wall, (ii) the ribosome and (iii) nucleic acids. Resistance can either develop intrinsically or extrinsically via horizontal gene transfer, drug site modification, and efflux pumps etc. This review focuses on development of resistance to currently used antibiotics in Staphylococcal infection, novel therapeutic approaches resistance pattern of antibiotics and also the future prospectus for new antibiotics usage.