用余数列计算多元消元理想的最低阶元

Tateaki Sasaki, D. Inaba
{"title":"用余数列计算多元消元理想的最低阶元","authors":"Tateaki Sasaki, D. Inaba","doi":"10.1109/SYNASC.2018.00019","DOIUrl":null,"url":null,"abstract":"Given a set of m+1 multivariate polynomials, with m > 1, in main variables x_1,...,x_m and sub-variables u_1,...,u_n, we can usually eliminate x_1,...,x_m and obtain a polynomial in u_1,...,u_n only. There are basically two methods to perform this elimination. One is the so-called resultant method and the other is the Groebner basis method. The Groebner basis method gives the lowest-order element \\haS(u) of the elimination ideal, where (u) = (u_1,...,u_n), but it is often very slow. The resultant method is quite fast, but the resulting polynomial R(u) often contains many more terms than \\haS(u). In this paper, we present a simple method of computing \\haS(u) by the repeated computation of PRSs (polynomial remainder sequences). The idea is to compute PRSs by changing their arguments systematically and obtain polynomials R_1(u),...,R_k(u), k > 1, in the sub-variables only. Let \\baS(u) be the GCD of R_1,...,R_k. Then, our main theorem asserts that \\baS(u) is a multiple of \\haS(u): \\baS(u) = \\tie(u)\\haS(u). We call \\tie(u) the extraneous factor and it often consists of a small number of terms. We present three conditions and one sub-method to remove \\tie(u) from \\baS(u).","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the Lowest-Order Element of a Multivariate Elimination Ideal by Using Remainder Sequences\",\"authors\":\"Tateaki Sasaki, D. Inaba\",\"doi\":\"10.1109/SYNASC.2018.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set of m+1 multivariate polynomials, with m > 1, in main variables x_1,...,x_m and sub-variables u_1,...,u_n, we can usually eliminate x_1,...,x_m and obtain a polynomial in u_1,...,u_n only. There are basically two methods to perform this elimination. One is the so-called resultant method and the other is the Groebner basis method. The Groebner basis method gives the lowest-order element \\\\haS(u) of the elimination ideal, where (u) = (u_1,...,u_n), but it is often very slow. The resultant method is quite fast, but the resulting polynomial R(u) often contains many more terms than \\\\haS(u). In this paper, we present a simple method of computing \\\\haS(u) by the repeated computation of PRSs (polynomial remainder sequences). The idea is to compute PRSs by changing their arguments systematically and obtain polynomials R_1(u),...,R_k(u), k > 1, in the sub-variables only. Let \\\\baS(u) be the GCD of R_1,...,R_k. Then, our main theorem asserts that \\\\baS(u) is a multiple of \\\\haS(u): \\\\baS(u) = \\\\tie(u)\\\\haS(u). We call \\\\tie(u) the extraneous factor and it often consists of a small number of terms. We present three conditions and one sub-method to remove \\\\tie(u) from \\\\baS(u).\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一组m+1个多元多项式,其中m > 1,主变量为x_1,…,x_m和子变量u_1,…,u_n,我们通常可以消去x_1,…,x_m,得到一个多项式在u_1,…,只u_n。基本上有两种方法来执行这种消除。一种是所谓的合成法,另一种是格罗布纳基法。Groebner基方法给出了消元理想的最低阶元素\haS(u),其中(u) = (u_1,…,u_n),但它通常很慢。得到的方法相当快,但是得到的多项式R(u)通常比\haS(u)包含更多的项。本文提出了一种通过重复计算多项式余数序列来计算\haS(u)的简单方法。其思想是通过系统地改变它们的参数来计算prs,并仅在子变量中获得多项式R_1(u),…,R_k(u), k > 1。设\baS(u)为R_1,…,R_k的GCD。然后,我们的主要定理断言\baS(u)是\haS(u)的倍数:\baS(u) = \tie(u)\haS(u)。我们称\tie(u)为无关因子,它通常由少量项组成。我们提出了从\baS(u)中去除\tie(u)的三个条件和一个子方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the Lowest-Order Element of a Multivariate Elimination Ideal by Using Remainder Sequences
Given a set of m+1 multivariate polynomials, with m > 1, in main variables x_1,...,x_m and sub-variables u_1,...,u_n, we can usually eliminate x_1,...,x_m and obtain a polynomial in u_1,...,u_n only. There are basically two methods to perform this elimination. One is the so-called resultant method and the other is the Groebner basis method. The Groebner basis method gives the lowest-order element \haS(u) of the elimination ideal, where (u) = (u_1,...,u_n), but it is often very slow. The resultant method is quite fast, but the resulting polynomial R(u) often contains many more terms than \haS(u). In this paper, we present a simple method of computing \haS(u) by the repeated computation of PRSs (polynomial remainder sequences). The idea is to compute PRSs by changing their arguments systematically and obtain polynomials R_1(u),...,R_k(u), k > 1, in the sub-variables only. Let \baS(u) be the GCD of R_1,...,R_k. Then, our main theorem asserts that \baS(u) is a multiple of \haS(u): \baS(u) = \tie(u)\haS(u). We call \tie(u) the extraneous factor and it often consists of a small number of terms. We present three conditions and one sub-method to remove \tie(u) from \baS(u).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信