A. Pawar, M. A. Jawale, Ravi Kumar Tirandasu, S. Potharaju
{"title":"SU-CCE:一种新的高维降维特征选择方法","authors":"A. Pawar, M. A. Jawale, Ravi Kumar Tirandasu, S. Potharaju","doi":"10.3233/apc210196","DOIUrl":null,"url":null,"abstract":"High dimensionality is the serious issue in the preprocessing of data mining. Having large number of features in the dataset leads to several complications for classifying an unknown instance. In a initial dataspace there may be redundant and irrelevant features present, which leads to high memory consumption, and confuse the learning model created with those properties of features. Always it is advisable to select the best features and generate the classification model for better accuracy. In this research, we proposed a novel feature selection approach and Symmetrical uncertainty and Correlation Coefficient (SU-CCE) for reducing the high dimensional feature space and increasing the classification accuracy. The experiment is performed on colon cancer microarray dataset which has 2000 features. The proposed method derived 38 best features from it. To measure the strength of proposed method, top 38 features extracted by 4 traditional filter-based methods are compared with various classifiers. After careful investigation of result, the proposed approach is competing with most of the traditional methods.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SU-CCE: A Novel Feature Selection Approach for Reducing High Dimensionality\",\"authors\":\"A. Pawar, M. A. Jawale, Ravi Kumar Tirandasu, S. Potharaju\",\"doi\":\"10.3233/apc210196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High dimensionality is the serious issue in the preprocessing of data mining. Having large number of features in the dataset leads to several complications for classifying an unknown instance. In a initial dataspace there may be redundant and irrelevant features present, which leads to high memory consumption, and confuse the learning model created with those properties of features. Always it is advisable to select the best features and generate the classification model for better accuracy. In this research, we proposed a novel feature selection approach and Symmetrical uncertainty and Correlation Coefficient (SU-CCE) for reducing the high dimensional feature space and increasing the classification accuracy. The experiment is performed on colon cancer microarray dataset which has 2000 features. The proposed method derived 38 best features from it. To measure the strength of proposed method, top 38 features extracted by 4 traditional filter-based methods are compared with various classifiers. After careful investigation of result, the proposed approach is competing with most of the traditional methods.\",\"PeriodicalId\":429440,\"journal\":{\"name\":\"Recent Trends in Intensive Computing\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Trends in Intensive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/apc210196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SU-CCE: A Novel Feature Selection Approach for Reducing High Dimensionality
High dimensionality is the serious issue in the preprocessing of data mining. Having large number of features in the dataset leads to several complications for classifying an unknown instance. In a initial dataspace there may be redundant and irrelevant features present, which leads to high memory consumption, and confuse the learning model created with those properties of features. Always it is advisable to select the best features and generate the classification model for better accuracy. In this research, we proposed a novel feature selection approach and Symmetrical uncertainty and Correlation Coefficient (SU-CCE) for reducing the high dimensional feature space and increasing the classification accuracy. The experiment is performed on colon cancer microarray dataset which has 2000 features. The proposed method derived 38 best features from it. To measure the strength of proposed method, top 38 features extracted by 4 traditional filter-based methods are compared with various classifiers. After careful investigation of result, the proposed approach is competing with most of the traditional methods.