{"title":"静电纺丝制备不同形态PA66胶体晶体纤维","authors":"Jingxia Wang, Guangchen Pei, Pingping Wu","doi":"10.2174/2210298103666230516153457","DOIUrl":null,"url":null,"abstract":"\n\nColloidal crystal (CC) fiber has unique light manipulation characteristics, fiber flexibility, and the potential to be used in the textile industry as an alternative to chemical dyes. Introducing polyamide 66 (PA66) into CC fiber can effectively improve the performance of fibers. In this study, polyamide 66 (PA66) CC fibers with various morphologies were fabricated by electrospinning using high-tensile PA66 and P(St-MMA-AA) latex particles as raw materials, such as close-packed, inlaid, noodle-like, spindle knots, bamboo-like, semi-enclosed, hat-like, etc. The formation mechanism of various fibers was analyzed based on the phase separation and assembly interaction. The prepared PA66 CC fiber film was reported to have unique structural color and enhanced mechanical properties, which can be used as a substrate for drawing various patterns. This work will provide a novel idea for the fabrication of functional CC fiber, which is helpful for the potential application in the textile industry.\n","PeriodicalId":184819,"journal":{"name":"Current Chinese Science","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrospinning Fabrication of PA66 Colloidal Crystal Fibers with Various Morphologies\",\"authors\":\"Jingxia Wang, Guangchen Pei, Pingping Wu\",\"doi\":\"10.2174/2210298103666230516153457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nColloidal crystal (CC) fiber has unique light manipulation characteristics, fiber flexibility, and the potential to be used in the textile industry as an alternative to chemical dyes. Introducing polyamide 66 (PA66) into CC fiber can effectively improve the performance of fibers. In this study, polyamide 66 (PA66) CC fibers with various morphologies were fabricated by electrospinning using high-tensile PA66 and P(St-MMA-AA) latex particles as raw materials, such as close-packed, inlaid, noodle-like, spindle knots, bamboo-like, semi-enclosed, hat-like, etc. The formation mechanism of various fibers was analyzed based on the phase separation and assembly interaction. The prepared PA66 CC fiber film was reported to have unique structural color and enhanced mechanical properties, which can be used as a substrate for drawing various patterns. This work will provide a novel idea for the fabrication of functional CC fiber, which is helpful for the potential application in the textile industry.\\n\",\"PeriodicalId\":184819,\"journal\":{\"name\":\"Current Chinese Science\",\"volume\":\"219 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Chinese Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210298103666230516153457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Chinese Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210298103666230516153457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrospinning Fabrication of PA66 Colloidal Crystal Fibers with Various Morphologies
Colloidal crystal (CC) fiber has unique light manipulation characteristics, fiber flexibility, and the potential to be used in the textile industry as an alternative to chemical dyes. Introducing polyamide 66 (PA66) into CC fiber can effectively improve the performance of fibers. In this study, polyamide 66 (PA66) CC fibers with various morphologies were fabricated by electrospinning using high-tensile PA66 and P(St-MMA-AA) latex particles as raw materials, such as close-packed, inlaid, noodle-like, spindle knots, bamboo-like, semi-enclosed, hat-like, etc. The formation mechanism of various fibers was analyzed based on the phase separation and assembly interaction. The prepared PA66 CC fiber film was reported to have unique structural color and enhanced mechanical properties, which can be used as a substrate for drawing various patterns. This work will provide a novel idea for the fabrication of functional CC fiber, which is helpful for the potential application in the textile industry.