基于Gibbs采样的多传感器广义标记多伯努利滤波器的实现

B. Vo, B. Vo
{"title":"基于Gibbs采样的多传感器广义标记多伯努利滤波器的实现","authors":"B. Vo, B. Vo","doi":"10.23919/ICIF.2017.8009647","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient implementation of the multi-sensor generalized labeled multi-Bernoulli (GLMB) filter. The solution exploits the GLMB joint prediction and update together with a new technique for truncating the GLMB filtering density based on Gibbs sampling. The resulting algorithm has a complexity in the order of the product of the number of measurements from each sensor, and quadratic in the number of hypothesized objects.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"An implementation of the multi-sensor generalized labeled multi-Bernoulli filter via Gibbs sampling\",\"authors\":\"B. Vo, B. Vo\",\"doi\":\"10.23919/ICIF.2017.8009647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an efficient implementation of the multi-sensor generalized labeled multi-Bernoulli (GLMB) filter. The solution exploits the GLMB joint prediction and update together with a new technique for truncating the GLMB filtering density based on Gibbs sampling. The resulting algorithm has a complexity in the order of the product of the number of measurements from each sensor, and quadratic in the number of hypothesized objects.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

提出了一种多传感器广义标记多伯努利(GLMB)滤波器的有效实现方法。该方案利用了GLMB联合预测和更新,并结合了一种基于Gibbs采样的截断GLMB滤波密度的新技术。所得算法的复杂度以每个传感器测量值的乘积为顺序,以假设对象的数量为二次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An implementation of the multi-sensor generalized labeled multi-Bernoulli filter via Gibbs sampling
This paper proposes an efficient implementation of the multi-sensor generalized labeled multi-Bernoulli (GLMB) filter. The solution exploits the GLMB joint prediction and update together with a new technique for truncating the GLMB filtering density based on Gibbs sampling. The resulting algorithm has a complexity in the order of the product of the number of measurements from each sensor, and quadratic in the number of hypothesized objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信