静态和基于概要的内联启发式的比较研究

Matthew Arnold, Stephen J. Fink, Vivek Sarkar, P. Sweeney
{"title":"静态和基于概要的内联启发式的比较研究","authors":"Matthew Arnold, Stephen J. Fink, Vivek Sarkar, P. Sweeney","doi":"10.1145/351397.351416","DOIUrl":null,"url":null,"abstract":"In this paper, we present a comparative study of static and profile-based heuristics for inlining. Our motivation for this study is to use the results to design the best inlining algorithm that we can for the Jalapeño dynamic optimizing compiler for Java [6]. We use a well-known approximation algorithm for the KNAPSACK problem as a common “meta-algorithm” for the inlining heuristics studied in this paper. We present performance results for an implementation of these inlining heuristics in the Jalapeño dynamic optimizing compiler. Our performance results show that the inlining heuristics studied in this paper can lead to significant speedups in execution time (up to 1.68x) even with modest limits on code size expansion (at most 10%).","PeriodicalId":261161,"journal":{"name":"Workshop on Dynamic and Adaptive Compilation and Optimization","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"A comparative study of static and profile-based heuristics for inlining\",\"authors\":\"Matthew Arnold, Stephen J. Fink, Vivek Sarkar, P. Sweeney\",\"doi\":\"10.1145/351397.351416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a comparative study of static and profile-based heuristics for inlining. Our motivation for this study is to use the results to design the best inlining algorithm that we can for the Jalapeño dynamic optimizing compiler for Java [6]. We use a well-known approximation algorithm for the KNAPSACK problem as a common “meta-algorithm” for the inlining heuristics studied in this paper. We present performance results for an implementation of these inlining heuristics in the Jalapeño dynamic optimizing compiler. Our performance results show that the inlining heuristics studied in this paper can lead to significant speedups in execution time (up to 1.68x) even with modest limits on code size expansion (at most 10%).\",\"PeriodicalId\":261161,\"journal\":{\"name\":\"Workshop on Dynamic and Adaptive Compilation and Optimization\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Dynamic and Adaptive Compilation and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/351397.351416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Dynamic and Adaptive Compilation and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/351397.351416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

摘要

在本文中,我们提出了静态和基于轮廓的内联启发式的比较研究。我们进行这项研究的动机是利用研究结果为Jalapeño Java动态优化编译器设计最佳的内联算法[6]。我们使用了一个著名的关于背包问题的近似算法作为本文所研究的内联启发式的通用“元算法”。我们给出了在Jalapeño动态优化编译器中实现这些内联启发式的性能结果。我们的性能结果表明,本文所研究的内联启发式方法即使在适度限制代码大小扩展(最多10%)的情况下,也能显著提高执行时间(高达1.68倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of static and profile-based heuristics for inlining
In this paper, we present a comparative study of static and profile-based heuristics for inlining. Our motivation for this study is to use the results to design the best inlining algorithm that we can for the Jalapeño dynamic optimizing compiler for Java [6]. We use a well-known approximation algorithm for the KNAPSACK problem as a common “meta-algorithm” for the inlining heuristics studied in this paper. We present performance results for an implementation of these inlining heuristics in the Jalapeño dynamic optimizing compiler. Our performance results show that the inlining heuristics studied in this paper can lead to significant speedups in execution time (up to 1.68x) even with modest limits on code size expansion (at most 10%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信