Daniel E. Jones, D. Vitullo, Trevor Cook, Lisa M. Scott, Andrew Toth, B. Kirby
{"title":"利用纠缠光子对模拟自由空间信道上的量子密钥分配","authors":"Daniel E. Jones, D. Vitullo, Trevor Cook, Lisa M. Scott, Andrew Toth, B. Kirby","doi":"10.1109/IPC53466.2022.9975528","DOIUrl":null,"url":null,"abstract":"We develop a quantum network simulation framework designed for integration into tactical simulation tools. It extends the quantum networking tool SQUANCH with realistic fiber and free-space channel models and implements subroutines for simulating entanglement-based QKD. We benchmark our framework using a published free-space QKD experiment.","PeriodicalId":202839,"journal":{"name":"2022 IEEE Photonics Conference (IPC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Quantum Key Distribution Using Entangled Photon Pairs Over Free-Space Channels\",\"authors\":\"Daniel E. Jones, D. Vitullo, Trevor Cook, Lisa M. Scott, Andrew Toth, B. Kirby\",\"doi\":\"10.1109/IPC53466.2022.9975528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a quantum network simulation framework designed for integration into tactical simulation tools. It extends the quantum networking tool SQUANCH with realistic fiber and free-space channel models and implements subroutines for simulating entanglement-based QKD. We benchmark our framework using a published free-space QKD experiment.\",\"PeriodicalId\":202839,\"journal\":{\"name\":\"2022 IEEE Photonics Conference (IPC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Photonics Conference (IPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPC53466.2022.9975528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPC53466.2022.9975528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of Quantum Key Distribution Using Entangled Photon Pairs Over Free-Space Channels
We develop a quantum network simulation framework designed for integration into tactical simulation tools. It extends the quantum networking tool SQUANCH with realistic fiber and free-space channel models and implements subroutines for simulating entanglement-based QKD. We benchmark our framework using a published free-space QKD experiment.