分段遗传关联代数

E. Marcos, Marcelo Moreira
{"title":"分段遗传关联代数","authors":"E. Marcos, Marcelo Moreira","doi":"10.1090/CONM/761/15317","DOIUrl":null,"url":null,"abstract":"Let $K\\Delta$ be the incidence algebra associated with a finite poset $\\Delta$ over the algebraically closed field $K$. We present a study of incidence algebras $K\\Delta$ that are piecewise hereditary, which we denominate PHI algebras. \nWe explore the simply connectedness of PHI algebras, and we give a positive answer to the so-called Skowro\\'nski problem for $K\\Delta$ a PHI algebra of type $\\mathcal{H}$, with connected quiver of tilting objects $\\mathcal{K}_{D^b (\\mathcal{H})}$: the group $HH^1(K\\Delta)$ is trivial if, and only if, $K\\Delta$ is a simply connected algebra. We determine an upper bound for the strong global dimension of PHI algebra; furthermore, we extend this result to sincere algebras proving that the strong global dimension of a sincere piecewise hereditary algebra is less or equal to three. If $A$ is a representation-infinite quasi-tilted algebra of quiver-sheaf type with a sincere indecomposable module $M$ (thus a special type of PHI algebra), then $M$ is exceptional, which makes it possible to construct a PHI algebra of wild type as the form of one-point extension algebra $K\\Delta[M]$ of some PHI algebra $K\\Delta$ by the canonical sincere $K\\Delta$-module $M$.","PeriodicalId":325430,"journal":{"name":"Advances in Representation Theory of\n Algebras","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Piecewise hereditary incidence\\n algebras\",\"authors\":\"E. Marcos, Marcelo Moreira\",\"doi\":\"10.1090/CONM/761/15317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K\\\\Delta$ be the incidence algebra associated with a finite poset $\\\\Delta$ over the algebraically closed field $K$. We present a study of incidence algebras $K\\\\Delta$ that are piecewise hereditary, which we denominate PHI algebras. \\nWe explore the simply connectedness of PHI algebras, and we give a positive answer to the so-called Skowro\\\\'nski problem for $K\\\\Delta$ a PHI algebra of type $\\\\mathcal{H}$, with connected quiver of tilting objects $\\\\mathcal{K}_{D^b (\\\\mathcal{H})}$: the group $HH^1(K\\\\Delta)$ is trivial if, and only if, $K\\\\Delta$ is a simply connected algebra. We determine an upper bound for the strong global dimension of PHI algebra; furthermore, we extend this result to sincere algebras proving that the strong global dimension of a sincere piecewise hereditary algebra is less or equal to three. If $A$ is a representation-infinite quasi-tilted algebra of quiver-sheaf type with a sincere indecomposable module $M$ (thus a special type of PHI algebra), then $M$ is exceptional, which makes it possible to construct a PHI algebra of wild type as the form of one-point extension algebra $K\\\\Delta[M]$ of some PHI algebra $K\\\\Delta$ by the canonical sincere $K\\\\Delta$-module $M$.\",\"PeriodicalId\":325430,\"journal\":{\"name\":\"Advances in Representation Theory of\\n Algebras\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Representation Theory of\\n Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/761/15317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Representation Theory of\n Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/761/15317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设K\Delta$是在代数闭域K$上与有限偏序集$\Delta$相关联的关联代数。我们研究了分段遗传的关联代数$K\Delta$,我们将其命名为PHI代数。我们探讨了PHI代数的单连通性,并给出了对于类型为$\mathcal{H}$的$K\Delta$ a的PHI代数的所谓Skowro\ nski问题的一个正答案,该问题具有倾斜物体的连通振子$\mathcal{K}_{D^b (\mathcal{H})}$:群$HH^1(K\Delta)$是平凡的当且仅当$K\Delta$是单连通代数。我们确定了PHI代数的强整体维数的上界;进一步,我们将这一结果推广到真诚代数,证明了真诚分段遗传代数的强全局维数小于或等于3。如果$A$是具有真诚不可分解模$M$的颤束型表示无限拟倾斜代数(因此是PHI代数的一种特殊类型),则$M$是例外的,这使得可以用规范真诚$K\Delta$-模$M$构造一个野生型PHI代数,作为某些PHI代数$K\Delta$的一点扩展代数$K\Delta[M]$的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piecewise hereditary incidence algebras
Let $K\Delta$ be the incidence algebra associated with a finite poset $\Delta$ over the algebraically closed field $K$. We present a study of incidence algebras $K\Delta$ that are piecewise hereditary, which we denominate PHI algebras. We explore the simply connectedness of PHI algebras, and we give a positive answer to the so-called Skowro\'nski problem for $K\Delta$ a PHI algebra of type $\mathcal{H}$, with connected quiver of tilting objects $\mathcal{K}_{D^b (\mathcal{H})}$: the group $HH^1(K\Delta)$ is trivial if, and only if, $K\Delta$ is a simply connected algebra. We determine an upper bound for the strong global dimension of PHI algebra; furthermore, we extend this result to sincere algebras proving that the strong global dimension of a sincere piecewise hereditary algebra is less or equal to three. If $A$ is a representation-infinite quasi-tilted algebra of quiver-sheaf type with a sincere indecomposable module $M$ (thus a special type of PHI algebra), then $M$ is exceptional, which makes it possible to construct a PHI algebra of wild type as the form of one-point extension algebra $K\Delta[M]$ of some PHI algebra $K\Delta$ by the canonical sincere $K\Delta$-module $M$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信