使用生命体征数据进行临床事件分类的联邦学习

Ruzaliev Rakhmiddin, Kangyoon Lee
{"title":"使用生命体征数据进行临床事件分类的联邦学习","authors":"Ruzaliev Rakhmiddin, Kangyoon Lee","doi":"10.3390/mti7070067","DOIUrl":null,"url":null,"abstract":"Accurate and timely diagnosis is a pillar of effective healthcare. However, the challenge lies in gathering extensive training data while maintaining patient privacy. This study introduces a novel approach using federated learning (FL) and a cross-device multimodal model for clinical event classification based on vital signs data. Our architecture employs FL to train several machine learning models including random forest, AdaBoost, and SGD ensemble models on vital signs data. The data were sourced from a diverse clientele at a Boston hospital (MIMIC-IV dataset). The FL structure trains directly on each client’s device, ensuring no transfer of sensitive data and preserving patient privacy. The study demonstrates that FL offers a powerful tool for privacy-preserving clinical event classification, with our approach achieving an impressive accuracy of 98.9%. These findings highlight the significant potential of FL and cross-device ensemble technology in healthcare applications, especially in the context of handling large volumes of sensitive patient data.","PeriodicalId":408374,"journal":{"name":"Multimodal Technol. Interact.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated Learning for Clinical Event Classification Using Vital Signs Data\",\"authors\":\"Ruzaliev Rakhmiddin, Kangyoon Lee\",\"doi\":\"10.3390/mti7070067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and timely diagnosis is a pillar of effective healthcare. However, the challenge lies in gathering extensive training data while maintaining patient privacy. This study introduces a novel approach using federated learning (FL) and a cross-device multimodal model for clinical event classification based on vital signs data. Our architecture employs FL to train several machine learning models including random forest, AdaBoost, and SGD ensemble models on vital signs data. The data were sourced from a diverse clientele at a Boston hospital (MIMIC-IV dataset). The FL structure trains directly on each client’s device, ensuring no transfer of sensitive data and preserving patient privacy. The study demonstrates that FL offers a powerful tool for privacy-preserving clinical event classification, with our approach achieving an impressive accuracy of 98.9%. These findings highlight the significant potential of FL and cross-device ensemble technology in healthcare applications, especially in the context of handling large volumes of sensitive patient data.\",\"PeriodicalId\":408374,\"journal\":{\"name\":\"Multimodal Technol. Interact.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal Technol. Interact.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mti7070067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Technol. Interact.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mti7070067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确和及时的诊断是有效医疗保健的支柱。然而,挑战在于在保持患者隐私的同时收集广泛的训练数据。本研究介绍了一种使用联邦学习(FL)和跨设备多模式模型的新方法,用于基于生命体征数据的临床事件分类。我们的架构使用FL来训练几个机器学习模型,包括随机森林、AdaBoost和SGD集成模型。数据来自波士顿一家医院的不同客户(MIMIC-IV数据集)。FL结构直接在每个客户的设备上进行训练,确保不传输敏感数据并保护患者隐私。研究表明,FL为保护隐私的临床事件分类提供了一个强大的工具,我们的方法达到了令人印象深刻的98.9%的准确率。这些发现突出了FL和跨设备集成技术在医疗保健应用中的巨大潜力,特别是在处理大量敏感患者数据的背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated Learning for Clinical Event Classification Using Vital Signs Data
Accurate and timely diagnosis is a pillar of effective healthcare. However, the challenge lies in gathering extensive training data while maintaining patient privacy. This study introduces a novel approach using federated learning (FL) and a cross-device multimodal model for clinical event classification based on vital signs data. Our architecture employs FL to train several machine learning models including random forest, AdaBoost, and SGD ensemble models on vital signs data. The data were sourced from a diverse clientele at a Boston hospital (MIMIC-IV dataset). The FL structure trains directly on each client’s device, ensuring no transfer of sensitive data and preserving patient privacy. The study demonstrates that FL offers a powerful tool for privacy-preserving clinical event classification, with our approach achieving an impressive accuracy of 98.9%. These findings highlight the significant potential of FL and cross-device ensemble technology in healthcare applications, especially in the context of handling large volumes of sensitive patient data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信