归纳和协归纳拓扑生成与丘奇命题和选择公理

M. Maietti, Samuele Maschio, M. Rathjen
{"title":"归纳和协归纳拓扑生成与丘奇命题和选择公理","authors":"M. Maietti, Samuele Maschio, M. Rathjen","doi":"10.46298/lmcs-18(4:5)2022","DOIUrl":null,"url":null,"abstract":"In this work we consider an extension MFcind of the Minimalist Foundation MF for predicative constructive mathematics with the addition of inductive and coinductive definitions sufficient to generate Sambin's Positive topologies, namely Martin-L\\\"of-Sambin formal topologies equipped with a Positivity relation (used to describe pointfree formal closed subsets). In particular the intensional level of MFcind, called mTTcind, is defined by extending with coinductive definitions another theory mTTind extending the intensional level mTT of MF with the sole addition of inductive definitions. In previous work we have shown that mTTind is consistent with Formal Church's Thesis CT and the Axiom of Choice AC via an interpretation in Aczel's CZF+REA. Our aim is to show the expectation that the addition of coinductive definitions to mTTind does not increase its consistency strength by reducing the consistency of mTTcind+CT+AC to the consistency of CZF+REA through various interpretations. We actually reach our goal in two ways. One way consists in first interpreting mTTcind+CT+AC in the theory extending CZF with the Union Regular Extension Axiom, REA_U, a strengthening of REA, and the Axiom of Relativized Dependent Choice, RDC. The theory CZF+REA_U+RDC is then interpreted in MLS*, a version of Martin-L\\\"of's type theory with Palmgren's superuniverse S. A last step consists in interpreting MLS* back into CZF+REA. The alternative way consists in first interpreting mTTcind+AC+CT directly in a version of Martin-L\\\"of's type theory with Palmgren's superuniverse extended with CT, which is then interpreted back to CZF+REA. A key benefit of the first way is that the theory CZF+REA_U+RDC also supports the intended set-theoretic interpretation of the extensional level of MFcind. Finally, all the theories considered, except mTTcind+AC+CT, are shown to be of the same proof-theoretic strength.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Inductive and Coinductive Topological Generation with Church's thesis and the Axiom of Choice\",\"authors\":\"M. Maietti, Samuele Maschio, M. Rathjen\",\"doi\":\"10.46298/lmcs-18(4:5)2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we consider an extension MFcind of the Minimalist Foundation MF for predicative constructive mathematics with the addition of inductive and coinductive definitions sufficient to generate Sambin's Positive topologies, namely Martin-L\\\\\\\"of-Sambin formal topologies equipped with a Positivity relation (used to describe pointfree formal closed subsets). In particular the intensional level of MFcind, called mTTcind, is defined by extending with coinductive definitions another theory mTTind extending the intensional level mTT of MF with the sole addition of inductive definitions. In previous work we have shown that mTTind is consistent with Formal Church's Thesis CT and the Axiom of Choice AC via an interpretation in Aczel's CZF+REA. Our aim is to show the expectation that the addition of coinductive definitions to mTTind does not increase its consistency strength by reducing the consistency of mTTcind+CT+AC to the consistency of CZF+REA through various interpretations. We actually reach our goal in two ways. One way consists in first interpreting mTTcind+CT+AC in the theory extending CZF with the Union Regular Extension Axiom, REA_U, a strengthening of REA, and the Axiom of Relativized Dependent Choice, RDC. The theory CZF+REA_U+RDC is then interpreted in MLS*, a version of Martin-L\\\\\\\"of's type theory with Palmgren's superuniverse S. A last step consists in interpreting MLS* back into CZF+REA. The alternative way consists in first interpreting mTTcind+AC+CT directly in a version of Martin-L\\\\\\\"of's type theory with Palmgren's superuniverse extended with CT, which is then interpreted back to CZF+REA. A key benefit of the first way is that the theory CZF+REA_U+RDC also supports the intended set-theoretic interpretation of the extensional level of MFcind. Finally, all the theories considered, except mTTcind+AC+CT, are shown to be of the same proof-theoretic strength.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-18(4:5)2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(4:5)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们考虑了对预测构造数学的极简主义基础mf的扩展mfind,并添加了归纳和协归纳定义,足以生成Sambin的正拓扑,即配备了正关系(用于描述无点的形式封闭子集)的Martin-L ' ' of-Sambin形式拓扑。特别是MFcind的内涵层次,称为mTTcind,是通过用共归纳定义扩展另一个理论mTTcind用归纳定义的唯一加法扩展MF的内涵层次mTTcind来定义的。在之前的工作中,我们通过对Aczel的CZF+REA的解释表明,mTTind与Formal Church的Thesis CT和选择公理AC是一致的。我们的目的是通过各种解释将mTTcind+CT+ acd的一致性降低到CZF+REA的一致性,从而表明对mTTcind添加共归纳定义不会增加其一致性强度的期望。我们实际上通过两种方式达到我们的目标。一种方法是首先用联合正则可拓公理(REA_U, REA的强化)和相对依赖选择公理(RDC)解释CZF理论中的ttcind +CT+AC。然后将理论CZF+REA_U+RDC解释为MLS*, MLS*是martin - l ' '的具有Palmgren超宇宙s的类型理论的一个版本。最后一步是将MLS*解释回CZF+REA。另一种方法是首先用Martin-L ' ' of'型理论直接解释mTTcind+AC+CT,并将Palmgren的超宇宙扩展为CT,然后将其解释回CZF+REA。第一种方法的一个关键好处是,理论czf +REA_U+RDC也支持预期的集论解释MFcind的扩展级别。最后,除ttcind +AC+CT外,所考虑的所有理论都具有相同的理论证明强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inductive and Coinductive Topological Generation with Church's thesis and the Axiom of Choice
In this work we consider an extension MFcind of the Minimalist Foundation MF for predicative constructive mathematics with the addition of inductive and coinductive definitions sufficient to generate Sambin's Positive topologies, namely Martin-L\"of-Sambin formal topologies equipped with a Positivity relation (used to describe pointfree formal closed subsets). In particular the intensional level of MFcind, called mTTcind, is defined by extending with coinductive definitions another theory mTTind extending the intensional level mTT of MF with the sole addition of inductive definitions. In previous work we have shown that mTTind is consistent with Formal Church's Thesis CT and the Axiom of Choice AC via an interpretation in Aczel's CZF+REA. Our aim is to show the expectation that the addition of coinductive definitions to mTTind does not increase its consistency strength by reducing the consistency of mTTcind+CT+AC to the consistency of CZF+REA through various interpretations. We actually reach our goal in two ways. One way consists in first interpreting mTTcind+CT+AC in the theory extending CZF with the Union Regular Extension Axiom, REA_U, a strengthening of REA, and the Axiom of Relativized Dependent Choice, RDC. The theory CZF+REA_U+RDC is then interpreted in MLS*, a version of Martin-L\"of's type theory with Palmgren's superuniverse S. A last step consists in interpreting MLS* back into CZF+REA. The alternative way consists in first interpreting mTTcind+AC+CT directly in a version of Martin-L\"of's type theory with Palmgren's superuniverse extended with CT, which is then interpreted back to CZF+REA. A key benefit of the first way is that the theory CZF+REA_U+RDC also supports the intended set-theoretic interpretation of the extensional level of MFcind. Finally, all the theories considered, except mTTcind+AC+CT, are shown to be of the same proof-theoretic strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信