倒β - liouville混合模型的变分学习及其在文本分类中的应用

Yongfa Ling, Wenbo Guan, Qiang Ruan, Heping Song, Yuping Lai
{"title":"倒β - liouville混合模型的变分学习及其在文本分类中的应用","authors":"Yongfa Ling, Wenbo Guan, Qiang Ruan, Heping Song, Yuping Lai","doi":"10.9781/ijimai.2022.08.006","DOIUrl":null,"url":null,"abstract":"The finite invert Beta-Liouville mixture model (IBLMM) has recently gained some attention due to its positive data modeling capability. Under the conventional variational inference (VI) framework, the analytically tractable solution to the optimization of the variational posterior distribution cannot be obtained, since the variational object function involves evaluation of intractable moments. With the recently proposed extended variational inference (EVI) framework, a new function is proposed to replace the original variational object function in order to avoid intractable moment computation, so that the analytically tractable solution of the IBLMM can be derived in an elegant way. The good performance of the proposed approach is demonstrated by experiments with both synthesized data and a real-world application namely text categorization.","PeriodicalId":143152,"journal":{"name":"Int. J. Interact. Multim. Artif. Intell.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variational Learning for the Inverted Beta-Liouville Mixture Model and Its Application to Text Categorization\",\"authors\":\"Yongfa Ling, Wenbo Guan, Qiang Ruan, Heping Song, Yuping Lai\",\"doi\":\"10.9781/ijimai.2022.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The finite invert Beta-Liouville mixture model (IBLMM) has recently gained some attention due to its positive data modeling capability. Under the conventional variational inference (VI) framework, the analytically tractable solution to the optimization of the variational posterior distribution cannot be obtained, since the variational object function involves evaluation of intractable moments. With the recently proposed extended variational inference (EVI) framework, a new function is proposed to replace the original variational object function in order to avoid intractable moment computation, so that the analytically tractable solution of the IBLMM can be derived in an elegant way. The good performance of the proposed approach is demonstrated by experiments with both synthesized data and a real-world application namely text categorization.\",\"PeriodicalId\":143152,\"journal\":{\"name\":\"Int. J. Interact. Multim. Artif. Intell.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Interact. Multim. Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9781/ijimai.2022.08.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Interact. Multim. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9781/ijimai.2022.08.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有限反演Beta-Liouville混合模型(IBLMM)由于其积极的数据建模能力,近年来得到了一些关注。在传统的变分推理(VI)框架下,由于变分目标函数涉及到难以处理的矩的评估,因此无法得到变分后验分布优化的解析解。在最近提出的扩展变分推理(EVI)框架中,为了避免难以处理的矩计算,提出了一个新的变分目标函数来代替原来的变分目标函数,从而可以以一种优雅的方式导出IBLMM的解析可处理解。通过对合成数据和实际应用文本分类的实验证明了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Learning for the Inverted Beta-Liouville Mixture Model and Its Application to Text Categorization
The finite invert Beta-Liouville mixture model (IBLMM) has recently gained some attention due to its positive data modeling capability. Under the conventional variational inference (VI) framework, the analytically tractable solution to the optimization of the variational posterior distribution cannot be obtained, since the variational object function involves evaluation of intractable moments. With the recently proposed extended variational inference (EVI) framework, a new function is proposed to replace the original variational object function in order to avoid intractable moment computation, so that the analytically tractable solution of the IBLMM can be derived in an elegant way. The good performance of the proposed approach is demonstrated by experiments with both synthesized data and a real-world application namely text categorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信