煤在循环流化床反应器中气化的计算流体动力学模拟

Manuel Escala, A. James
{"title":"煤在循环流化床反应器中气化的计算流体动力学模拟","authors":"Manuel Escala, A. James","doi":"10.1109/IESTEC46403.2019.00-71","DOIUrl":null,"url":null,"abstract":"One of the applications of coal as a fuel is the production of gas through circulating fluidized bed technology. The modeling of these systems allows verifying and optimizing the design and operation parameters of gasifiers for analysis and improvement of gasification technologies. The present study applies the fundamentals of modeling a circulating fluidized bed reactor for the gasification of lignite coal at atmospheric pressure, using air and steam as a gasifying agent. The equations governing multiphase flow are described including mass, momentum and energy transport. The Eulerian-Eulerian approach is applied in two dimensions to describe and solve the constitutive equations. The kinetic model considers eight gaseous species, including CO, CO2, CH4, H2, H2O, N2, O2, Tar and four pseudo solid species, including fixed carbon, volatile matter, moisture and ash. The hydrodynamic behavior of the model is analyzed and the resulting species fractions from the gasification process are compared with experimental data.","PeriodicalId":388062,"journal":{"name":"2019 7th International Engineering, Sciences and Technology Conference (IESTEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational Fluid Dynamics Simulation of Coal Gasification in a Circulating Fluidized Bed Reactor\",\"authors\":\"Manuel Escala, A. James\",\"doi\":\"10.1109/IESTEC46403.2019.00-71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the applications of coal as a fuel is the production of gas through circulating fluidized bed technology. The modeling of these systems allows verifying and optimizing the design and operation parameters of gasifiers for analysis and improvement of gasification technologies. The present study applies the fundamentals of modeling a circulating fluidized bed reactor for the gasification of lignite coal at atmospheric pressure, using air and steam as a gasifying agent. The equations governing multiphase flow are described including mass, momentum and energy transport. The Eulerian-Eulerian approach is applied in two dimensions to describe and solve the constitutive equations. The kinetic model considers eight gaseous species, including CO, CO2, CH4, H2, H2O, N2, O2, Tar and four pseudo solid species, including fixed carbon, volatile matter, moisture and ash. The hydrodynamic behavior of the model is analyzed and the resulting species fractions from the gasification process are compared with experimental data.\",\"PeriodicalId\":388062,\"journal\":{\"name\":\"2019 7th International Engineering, Sciences and Technology Conference (IESTEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Engineering, Sciences and Technology Conference (IESTEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IESTEC46403.2019.00-71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Engineering, Sciences and Technology Conference (IESTEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESTEC46403.2019.00-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

煤作为燃料的应用之一是通过循环流化床技术生产气体。这些系统的建模允许验证和优化气化炉的设计和操作参数,以分析和改进气化技术。本研究应用了常压下褐煤气化循环流化床反应器建模的基本原理,使用空气和蒸汽作为气化剂。描述了控制多相流的方程,包括质量、动量和能量输运。采用欧拉-欧拉方法在二维空间中描述和求解本构方程。动力学模型考虑了CO、CO2、CH4、H2、H2O、N2、O2、Tar等8种气态物质和固定碳、挥发物、水分、灰分等4种伪固体物质。分析了模型的水动力特性,并与实验数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Fluid Dynamics Simulation of Coal Gasification in a Circulating Fluidized Bed Reactor
One of the applications of coal as a fuel is the production of gas through circulating fluidized bed technology. The modeling of these systems allows verifying and optimizing the design and operation parameters of gasifiers for analysis and improvement of gasification technologies. The present study applies the fundamentals of modeling a circulating fluidized bed reactor for the gasification of lignite coal at atmospheric pressure, using air and steam as a gasifying agent. The equations governing multiphase flow are described including mass, momentum and energy transport. The Eulerian-Eulerian approach is applied in two dimensions to describe and solve the constitutive equations. The kinetic model considers eight gaseous species, including CO, CO2, CH4, H2, H2O, N2, O2, Tar and four pseudo solid species, including fixed carbon, volatile matter, moisture and ash. The hydrodynamic behavior of the model is analyzed and the resulting species fractions from the gasification process are compared with experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信