心电图实时数据分析体系结构

Nur Banu Oğur, C. Çeken
{"title":"心电图实时数据分析体系结构","authors":"Nur Banu Oğur, C. Çeken","doi":"10.1109/UBMK.2018.8566300","DOIUrl":null,"url":null,"abstract":"The concept of big data emerging from the expansion of data volumes on the Internet has begun to talk about its name in medicine as well as in many fields of life. Big data analytics, which also require the use of machine learning methods, enable the use of decision-making processes by extracting useful information from large and complex data sets. Implementing machine learning strategies on data sets within big data is an expensive process because it requires extensive use of resources such as CPU and memory. For this reason, platforms specially developed for big data analytics are designed. One of these systems, Apache Spark, has built-in machine learning algorithms ranging from regression to classification and clustering, and is a very powerful engine for real time stream processing. In this study, the first results of a system that provides real-time disease diagnosis from ECG data using Logistic Regression are presented. The first findings obtained show that this architecture, built with Apache Kafka and Apache Spark, can be an important design option in real time processing of ECG data.","PeriodicalId":293249,"journal":{"name":"2018 3rd International Conference on Computer Science and Engineering (UBMK)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real Time Data Analytics Architecture for ECG\",\"authors\":\"Nur Banu Oğur, C. Çeken\",\"doi\":\"10.1109/UBMK.2018.8566300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of big data emerging from the expansion of data volumes on the Internet has begun to talk about its name in medicine as well as in many fields of life. Big data analytics, which also require the use of machine learning methods, enable the use of decision-making processes by extracting useful information from large and complex data sets. Implementing machine learning strategies on data sets within big data is an expensive process because it requires extensive use of resources such as CPU and memory. For this reason, platforms specially developed for big data analytics are designed. One of these systems, Apache Spark, has built-in machine learning algorithms ranging from regression to classification and clustering, and is a very powerful engine for real time stream processing. In this study, the first results of a system that provides real-time disease diagnosis from ECG data using Logistic Regression are presented. The first findings obtained show that this architecture, built with Apache Kafka and Apache Spark, can be an important design option in real time processing of ECG data.\",\"PeriodicalId\":293249,\"journal\":{\"name\":\"2018 3rd International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK.2018.8566300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2018.8566300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着互联网上数据量的膨胀而产生的大数据的概念,已经开始在医学以及生活的许多领域谈论它的名字。大数据分析也需要使用机器学习方法,通过从大型复杂数据集中提取有用信息,从而实现决策过程的使用。在大数据中的数据集上实现机器学习策略是一个昂贵的过程,因为它需要大量使用CPU和内存等资源。为此,设计了专门为大数据分析开发的平台。其中一个系统是Apache Spark,它内置了从回归到分类和聚类的机器学习算法,并且是一个非常强大的实时流处理引擎。在这项研究中,提出了使用逻辑回归从ECG数据提供实时疾病诊断的系统的第一个结果。初步研究结果表明,该架构采用Apache Kafka和Apache Spark构建,可以作为心电数据实时处理的重要设计选项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real Time Data Analytics Architecture for ECG
The concept of big data emerging from the expansion of data volumes on the Internet has begun to talk about its name in medicine as well as in many fields of life. Big data analytics, which also require the use of machine learning methods, enable the use of decision-making processes by extracting useful information from large and complex data sets. Implementing machine learning strategies on data sets within big data is an expensive process because it requires extensive use of resources such as CPU and memory. For this reason, platforms specially developed for big data analytics are designed. One of these systems, Apache Spark, has built-in machine learning algorithms ranging from regression to classification and clustering, and is a very powerful engine for real time stream processing. In this study, the first results of a system that provides real-time disease diagnosis from ECG data using Logistic Regression are presented. The first findings obtained show that this architecture, built with Apache Kafka and Apache Spark, can be an important design option in real time processing of ECG data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信