基于H-K曲率分析的三维图像鼻尖和眼角检测新方法

P. Bagchi, D. Bhattacharjee, M. Nasipuri, D. K. Basu
{"title":"基于H-K曲率分析的三维图像鼻尖和眼角检测新方法","authors":"P. Bagchi, D. Bhattacharjee, M. Nasipuri, D. K. Basu","doi":"10.1109/EAIT.2012.6407931","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel method that combines a HK curvature-based approach for three-dimensional (3D) face detection in different poses (X-axis, Y-axis and Z-axis). Salient face features, such as the eyes and nose, are detected through an analysis of the curvature of the entire facial surface. All the experiments have been performed on the FRAV3D Database. After applying the proposed algorithm to the 3D facial surface we have obtained considerably good results i.e. on 752 3D face images our method detected the eye corners for 543 face images, thus giving a 72.20% of eye corners detection and 743 face images for nose-tip detection thus giving a 98.80% of good nose tip localization.","PeriodicalId":194103,"journal":{"name":"2012 Third International Conference on Emerging Applications of Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A novel approach to nose-tip and eye corners detection using H-K curvature analysis in case of 3D images\",\"authors\":\"P. Bagchi, D. Bhattacharjee, M. Nasipuri, D. K. Basu\",\"doi\":\"10.1109/EAIT.2012.6407931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel method that combines a HK curvature-based approach for three-dimensional (3D) face detection in different poses (X-axis, Y-axis and Z-axis). Salient face features, such as the eyes and nose, are detected through an analysis of the curvature of the entire facial surface. All the experiments have been performed on the FRAV3D Database. After applying the proposed algorithm to the 3D facial surface we have obtained considerably good results i.e. on 752 3D face images our method detected the eye corners for 543 face images, thus giving a 72.20% of eye corners detection and 743 face images for nose-tip detection thus giving a 98.80% of good nose tip localization.\",\"PeriodicalId\":194103,\"journal\":{\"name\":\"2012 Third International Conference on Emerging Applications of Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Emerging Applications of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIT.2012.6407931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Emerging Applications of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIT.2012.6407931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在本文中,我们提出了一种新的方法,结合了基于HK曲率的方法,用于不同姿态(x轴,y轴和z轴)的三维(3D)人脸检测。突出的面部特征,如眼睛和鼻子,是通过分析整个面部表面的曲率来检测的。所有实验均在FRAV3D数据库上进行。将所提出的算法应用于3D人脸表面后,我们获得了相当好的结果,即在752张3D人脸图像中,我们的方法检测了543张人脸图像的眼角,从而给出了72.20%的眼角检测和743张人脸图像的鼻尖检测,从而给出了98.80%的良好鼻尖定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel approach to nose-tip and eye corners detection using H-K curvature analysis in case of 3D images
In this paper we present a novel method that combines a HK curvature-based approach for three-dimensional (3D) face detection in different poses (X-axis, Y-axis and Z-axis). Salient face features, such as the eyes and nose, are detected through an analysis of the curvature of the entire facial surface. All the experiments have been performed on the FRAV3D Database. After applying the proposed algorithm to the 3D facial surface we have obtained considerably good results i.e. on 752 3D face images our method detected the eye corners for 543 face images, thus giving a 72.20% of eye corners detection and 743 face images for nose-tip detection thus giving a 98.80% of good nose tip localization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信