陈氏吸引子中拓扑马蹄形存在的新证明

Wenjuan Wu, Zengqiang Chen, Guanrong Chen
{"title":"陈氏吸引子中拓扑马蹄形存在的新证明","authors":"Wenjuan Wu, Zengqiang Chen, Guanrong Chen","doi":"10.1109/IWCFTA.2009.64","DOIUrl":null,"url":null,"abstract":"Based on the well-known topological horseshoe theorem, a new rigorous computer-assisted proof for the existence of topological horseshoe in Chen’s attractor is given. An appropriate Poincaré section of Chen’s attractor is chosen to obtain the corresponding Poincaré map which is proved to be semi-conjugate to a 2-shift map. This implies that Chen’s attractor has positive topological entropy, thus in this sense it is chaotic. The method used is somewhat simpler and more convenient than the classical Ši’lnikov method.","PeriodicalId":279256,"journal":{"name":"2009 International Workshop on Chaos-Fractals Theories and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Proof for the Existence of Topological Horseshoe in Chen's Attractor\",\"authors\":\"Wenjuan Wu, Zengqiang Chen, Guanrong Chen\",\"doi\":\"10.1109/IWCFTA.2009.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the well-known topological horseshoe theorem, a new rigorous computer-assisted proof for the existence of topological horseshoe in Chen’s attractor is given. An appropriate Poincaré section of Chen’s attractor is chosen to obtain the corresponding Poincaré map which is proved to be semi-conjugate to a 2-shift map. This implies that Chen’s attractor has positive topological entropy, thus in this sense it is chaotic. The method used is somewhat simpler and more convenient than the classical Ši’lnikov method.\",\"PeriodicalId\":279256,\"journal\":{\"name\":\"2009 International Workshop on Chaos-Fractals Theories and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Chaos-Fractals Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2009.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Chaos-Fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2009.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于著名的拓扑马蹄形定理,给出了Chen吸引子中拓扑马蹄形存在的一个新的严密的计算机辅助证明。选择了Chen吸引子的一个合适的poincarcarve截面,得到了相应的poincarcarve映射,并证明了该映射是2位移映射的半共轭映射。这意味着Chen的吸引子具有正拓扑熵,因此在这个意义上它是混沌的。所使用的方法比经典的Ši 'lnikov方法更简单、更方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Proof for the Existence of Topological Horseshoe in Chen's Attractor
Based on the well-known topological horseshoe theorem, a new rigorous computer-assisted proof for the existence of topological horseshoe in Chen’s attractor is given. An appropriate Poincaré section of Chen’s attractor is chosen to obtain the corresponding Poincaré map which is proved to be semi-conjugate to a 2-shift map. This implies that Chen’s attractor has positive topological entropy, thus in this sense it is chaotic. The method used is somewhat simpler and more convenient than the classical Ši’lnikov method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信