使用调谐随机漂移粒子群优化算法优化天线阵列设计

Debolina Brahma, Arindam Deb
{"title":"使用调谐随机漂移粒子群优化算法优化天线阵列设计","authors":"Debolina Brahma, Arindam Deb","doi":"10.1109/IEMTRONICS51293.2020.9216378","DOIUrl":null,"url":null,"abstract":"Conventional particle swarm optimization and random drift particle swarm optimization algorithms are applied to the optimal design of a collinear dipole antenna array. The random drift particle swam optimization algorithm is tuned for its best performance by properly choosing the control parameter and it showed a faster convergence rate compared to the conventional particle swarm optimization algorithm. The optimal array designed using the conventional particle swarm optimization algorithm has a beam width of 9 degrees between 1st nulls and maximum side lobe level of -24.17 dB whereas the array designed using the random drift particle swarm optimization algorithm has a beam width of 10 degrees between 1st nulls and maximum side lobe level of -27.46 dB.","PeriodicalId":269697,"journal":{"name":"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Design of Antenna Array using Tuned Random Drift Particle Swarm Optimization Algorithm\",\"authors\":\"Debolina Brahma, Arindam Deb\",\"doi\":\"10.1109/IEMTRONICS51293.2020.9216378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional particle swarm optimization and random drift particle swarm optimization algorithms are applied to the optimal design of a collinear dipole antenna array. The random drift particle swam optimization algorithm is tuned for its best performance by properly choosing the control parameter and it showed a faster convergence rate compared to the conventional particle swarm optimization algorithm. The optimal array designed using the conventional particle swarm optimization algorithm has a beam width of 9 degrees between 1st nulls and maximum side lobe level of -24.17 dB whereas the array designed using the random drift particle swarm optimization algorithm has a beam width of 10 degrees between 1st nulls and maximum side lobe level of -27.46 dB.\",\"PeriodicalId\":269697,\"journal\":{\"name\":\"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMTRONICS51293.2020.9216378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMTRONICS51293.2020.9216378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将传统粒子群算法和随机漂移粒子群算法应用于共线偶极子天线阵的优化设计。通过合理选择控制参数,使随机漂移粒子游优化算法的性能达到最佳,与传统粒子群优化算法相比,该算法具有更快的收敛速度。采用传统粒子群优化算法设计的最优阵列的波束宽度为第一个零点之间9度,最大旁瓣电平为-24.17 dB,而采用随机漂移粒子群优化算法设计的阵列的波束宽度为第一个零点之间10度,最大旁瓣电平为-27.46 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Design of Antenna Array using Tuned Random Drift Particle Swarm Optimization Algorithm
Conventional particle swarm optimization and random drift particle swarm optimization algorithms are applied to the optimal design of a collinear dipole antenna array. The random drift particle swam optimization algorithm is tuned for its best performance by properly choosing the control parameter and it showed a faster convergence rate compared to the conventional particle swarm optimization algorithm. The optimal array designed using the conventional particle swarm optimization algorithm has a beam width of 9 degrees between 1st nulls and maximum side lobe level of -24.17 dB whereas the array designed using the random drift particle swarm optimization algorithm has a beam width of 10 degrees between 1st nulls and maximum side lobe level of -27.46 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信