混合非id约束贝叶斯网络分类器的学习。抽样

Zhongfeng Wang, Zhihai Wang, Bin Fu
{"title":"混合非id约束贝叶斯网络分类器的学习。抽样","authors":"Zhongfeng Wang, Zhihai Wang, Bin Fu","doi":"10.1109/ICDMW.2010.199","DOIUrl":null,"url":null,"abstract":"Generally, numerous data may increase the statistical power. However, many algorithms in data mining community only focus on small samples. This is because when the sample size increases, the data set is not necessarily identically distributed in spite of being generated by some common data generating mechanism. In this paper, we realize restricted Bayesian network classifiers are robust even when training data set is non-i.i.d. sampling. Empirical studies show that these algorithms performs as well as others which combine independent experimental results by some statistical methods.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Restricted Bayesian Network Classifiers with Mixed Non-i.i.d. Sampling\",\"authors\":\"Zhongfeng Wang, Zhihai Wang, Bin Fu\",\"doi\":\"10.1109/ICDMW.2010.199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally, numerous data may increase the statistical power. However, many algorithms in data mining community only focus on small samples. This is because when the sample size increases, the data set is not necessarily identically distributed in spite of being generated by some common data generating mechanism. In this paper, we realize restricted Bayesian network classifiers are robust even when training data set is non-i.i.d. sampling. Empirical studies show that these algorithms performs as well as others which combine independent experimental results by some statistical methods.\",\"PeriodicalId\":170201,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining Workshops\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2010.199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通常,大量的数据会增加统计能力。然而,数据挖掘界的许多算法只关注小样本。这是因为当样本量增加时,尽管数据集是由一些常见的数据生成机制生成的,但数据集不一定是同分布的。在本文中,我们实现了约束贝叶斯网络分类器即使在训练数据集是非id的情况下也是鲁棒的。抽样。实证研究表明,这些算法的性能与通过一些统计方法结合独立实验结果的算法一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Restricted Bayesian Network Classifiers with Mixed Non-i.i.d. Sampling
Generally, numerous data may increase the statistical power. However, many algorithms in data mining community only focus on small samples. This is because when the sample size increases, the data set is not necessarily identically distributed in spite of being generated by some common data generating mechanism. In this paper, we realize restricted Bayesian network classifiers are robust even when training data set is non-i.i.d. sampling. Empirical studies show that these algorithms performs as well as others which combine independent experimental results by some statistical methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信