索引时空数据仓库

D. Papadias, Yufei Tao, Panos Kalnis, Jun Zhang
{"title":"索引时空数据仓库","authors":"D. Papadias, Yufei Tao, Panos Kalnis, Jun Zhang","doi":"10.1109/ICDE.2002.994706","DOIUrl":null,"url":null,"abstract":"Spatio-temporal databases store information about the positions of individual objects over time. In many applications, however, such as traffic supervision or mobile communication systems, only summarized data, like the average number of cars in an area for a specific period, or the number of phones serviced by a cell each day, is required. Although this information can be obtained from operational databases, its computation is expensive, rendering online processing inapplicable. A vital solution is the construction of a spatio-temporal data warehouse. In this paper, we describe a framework for supporting OLAP operations over spatio-temporal data. We argue that the spatial and temporal dimensions should be modeled as a combined dimension on the data cube and we present data structures which integrate spatio-temporal indexing with pre-aggregation. While the well-known materialization techniques require a-priori knowledge of the grouping hierarchy, we develop methods that utilize the proposed structures for efficient execution of ad-hoc group-bys. Our techniques can be used for both static and dynamic dimensions.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"171","resultStr":"{\"title\":\"Indexing spatio-temporal data warehouses\",\"authors\":\"D. Papadias, Yufei Tao, Panos Kalnis, Jun Zhang\",\"doi\":\"10.1109/ICDE.2002.994706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatio-temporal databases store information about the positions of individual objects over time. In many applications, however, such as traffic supervision or mobile communication systems, only summarized data, like the average number of cars in an area for a specific period, or the number of phones serviced by a cell each day, is required. Although this information can be obtained from operational databases, its computation is expensive, rendering online processing inapplicable. A vital solution is the construction of a spatio-temporal data warehouse. In this paper, we describe a framework for supporting OLAP operations over spatio-temporal data. We argue that the spatial and temporal dimensions should be modeled as a combined dimension on the data cube and we present data structures which integrate spatio-temporal indexing with pre-aggregation. While the well-known materialization techniques require a-priori knowledge of the grouping hierarchy, we develop methods that utilize the proposed structures for efficient execution of ad-hoc group-bys. Our techniques can be used for both static and dynamic dimensions.\",\"PeriodicalId\":191529,\"journal\":{\"name\":\"Proceedings 18th International Conference on Data Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"171\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 18th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2002.994706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 171

摘要

时空数据库存储有关单个物体随时间变化的位置信息。然而,在许多应用中,如交通监管或移动通信系统,只需要汇总数据,如特定时期某一地区的平均汽车数量,或每天一个移动电话的服务数量。虽然这些信息可以从操作数据库中获得,但其计算成本很高,使得在线处理不适用。一个重要的解决方案是构建一个时空数据仓库。在本文中,我们描述了一个支持基于时空数据的OLAP操作的框架。我们认为空间维度和时间维度应该建模为数据立方体上的一个组合维度,并提出了将时空索引与预聚合相结合的数据结构。虽然众所周知的物化技术需要先验的分组层次知识,但我们开发了利用所提出的结构来有效执行特设分组的方法。我们的技术可用于静态和动态维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indexing spatio-temporal data warehouses
Spatio-temporal databases store information about the positions of individual objects over time. In many applications, however, such as traffic supervision or mobile communication systems, only summarized data, like the average number of cars in an area for a specific period, or the number of phones serviced by a cell each day, is required. Although this information can be obtained from operational databases, its computation is expensive, rendering online processing inapplicable. A vital solution is the construction of a spatio-temporal data warehouse. In this paper, we describe a framework for supporting OLAP operations over spatio-temporal data. We argue that the spatial and temporal dimensions should be modeled as a combined dimension on the data cube and we present data structures which integrate spatio-temporal indexing with pre-aggregation. While the well-known materialization techniques require a-priori knowledge of the grouping hierarchy, we develop methods that utilize the proposed structures for efficient execution of ad-hoc group-bys. Our techniques can be used for both static and dynamic dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信