{"title":"基于双有源桥式变换器的能量共享双扶梯系统设计","authors":"Hejin Yang, Youyi Wang, Freddy Lim","doi":"10.1109/IEMDC.2013.6556324","DOIUrl":null,"url":null,"abstract":"This paper proposes an energy sharing adjustable speed drive system for dual-escalator applications. The primary goal is to harvest the regenerative energy produced by downward running escalator and share the energy with the upward running escalator. Thus the system energy consumption is reduced. The energy sharing is realized by inter-connecting the DC buses of two adjustable speed drives. An isolated bi-directional dc/dc converter, or dual active bridge converter, is adopted to transfer the energy from one drive to another. This approach has better fault protection capability as compared with direct connecting the two dc buses. A voltage hysteresis control method is introduced to control the dual escalator system. The design concept and control method have been validated by Matlab/Simulink simulation.","PeriodicalId":199452,"journal":{"name":"2013 International Electric Machines & Drives Conference","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of an energy sharing dual-escalator system based on the dual active bridge converter\",\"authors\":\"Hejin Yang, Youyi Wang, Freddy Lim\",\"doi\":\"10.1109/IEMDC.2013.6556324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an energy sharing adjustable speed drive system for dual-escalator applications. The primary goal is to harvest the regenerative energy produced by downward running escalator and share the energy with the upward running escalator. Thus the system energy consumption is reduced. The energy sharing is realized by inter-connecting the DC buses of two adjustable speed drives. An isolated bi-directional dc/dc converter, or dual active bridge converter, is adopted to transfer the energy from one drive to another. This approach has better fault protection capability as compared with direct connecting the two dc buses. A voltage hysteresis control method is introduced to control the dual escalator system. The design concept and control method have been validated by Matlab/Simulink simulation.\",\"PeriodicalId\":199452,\"journal\":{\"name\":\"2013 International Electric Machines & Drives Conference\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Electric Machines & Drives Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC.2013.6556324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Electric Machines & Drives Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2013.6556324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of an energy sharing dual-escalator system based on the dual active bridge converter
This paper proposes an energy sharing adjustable speed drive system for dual-escalator applications. The primary goal is to harvest the regenerative energy produced by downward running escalator and share the energy with the upward running escalator. Thus the system energy consumption is reduced. The energy sharing is realized by inter-connecting the DC buses of two adjustable speed drives. An isolated bi-directional dc/dc converter, or dual active bridge converter, is adopted to transfer the energy from one drive to another. This approach has better fault protection capability as compared with direct connecting the two dc buses. A voltage hysteresis control method is introduced to control the dual escalator system. The design concept and control method have been validated by Matlab/Simulink simulation.