基于期望传播的高光谱图像稀疏光谱分解

Zeng Li, Y. Altmann, Jie Chen, S. Mclaughlin, S. Rahardja
{"title":"基于期望传播的高光谱图像稀疏光谱分解","authors":"Zeng Li, Y. Altmann, Jie Chen, S. Mclaughlin, S. Rahardja","doi":"10.1109/VCIP49819.2020.9301819","DOIUrl":null,"url":null,"abstract":"The aim of spectral unmixing of hyperspectral images is to determine the component materials and their associated abundances from mixed pixels. In this paper, we present sparse linear unmixing via an Expectation-Propagation method based on the classical linear mixing model and a spike-and-slab prior promoting abundance sparsity. The proposed method, which allows approximate uncertainty quantification (UQ), is compared to existing sparse unmixing methods, including Monte Carlo strategies traditionally considered for UQ. Experimental results on synthetic data and real hyperspectral data illustrate the benefits of the proposed algorithm over state-of-art linear unmixing methods.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"01 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse Spectral Unmixing of Hyperspectral Images using Expectation-Propagation\",\"authors\":\"Zeng Li, Y. Altmann, Jie Chen, S. Mclaughlin, S. Rahardja\",\"doi\":\"10.1109/VCIP49819.2020.9301819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of spectral unmixing of hyperspectral images is to determine the component materials and their associated abundances from mixed pixels. In this paper, we present sparse linear unmixing via an Expectation-Propagation method based on the classical linear mixing model and a spike-and-slab prior promoting abundance sparsity. The proposed method, which allows approximate uncertainty quantification (UQ), is compared to existing sparse unmixing methods, including Monte Carlo strategies traditionally considered for UQ. Experimental results on synthetic data and real hyperspectral data illustrate the benefits of the proposed algorithm over state-of-art linear unmixing methods.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"01 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高光谱图像光谱分解的目的是从混合像元中确定组成物质及其相关丰度。本文采用基于经典线性混合模型的期望-传播方法和提高丰度稀疏性的尖峰-板先验,提出了稀疏线性解混方法。该方法允许近似不确定性量化(UQ),并与现有的稀疏解混方法进行了比较,包括传统上考虑UQ的蒙特卡罗策略。在合成数据和真实高光谱数据上的实验结果表明,该算法优于现有的线性解混方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Spectral Unmixing of Hyperspectral Images using Expectation-Propagation
The aim of spectral unmixing of hyperspectral images is to determine the component materials and their associated abundances from mixed pixels. In this paper, we present sparse linear unmixing via an Expectation-Propagation method based on the classical linear mixing model and a spike-and-slab prior promoting abundance sparsity. The proposed method, which allows approximate uncertainty quantification (UQ), is compared to existing sparse unmixing methods, including Monte Carlo strategies traditionally considered for UQ. Experimental results on synthetic data and real hyperspectral data illustrate the benefits of the proposed algorithm over state-of-art linear unmixing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信