信号处理应用的计算优化近似计算

P. Palsodkar, P. Palsodkar, P. Dakhole, Roshan Umate, A. Gurjar, A. Gokhale
{"title":"信号处理应用的计算优化近似计算","authors":"P. Palsodkar, P. Palsodkar, P. Dakhole, Roshan Umate, A. Gurjar, A. Gokhale","doi":"10.1109/ICETEMS56252.2022.10093398","DOIUrl":null,"url":null,"abstract":"Computational optimization through approximation approach proves to be an effective way for Digital Signal Processing (DSP) at anemometric scales. Here approximation methodology is discussed to design arithmetic blocks of DSP. Implementation on Xilinx ISE 13.2 on Spartan 6 is done for approximate arithmetic block analysis like adder and multiplier which are capable to do area, power and delay optimization if some error is tolerable. Approximate Computational Complexity (ACC) method based 4:2 compressor is designed for image compression gives area, delay and power reduction as 18%, 7% and 49% respectively. Area and power optimized 8*8 image compression obtained at the cost of 20% increase in error rate which is tolerable with reference to adequate PSNR.","PeriodicalId":170905,"journal":{"name":"2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computationally Optimized Approximate Computing for Signal Processing Applications\",\"authors\":\"P. Palsodkar, P. Palsodkar, P. Dakhole, Roshan Umate, A. Gurjar, A. Gokhale\",\"doi\":\"10.1109/ICETEMS56252.2022.10093398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational optimization through approximation approach proves to be an effective way for Digital Signal Processing (DSP) at anemometric scales. Here approximation methodology is discussed to design arithmetic blocks of DSP. Implementation on Xilinx ISE 13.2 on Spartan 6 is done for approximate arithmetic block analysis like adder and multiplier which are capable to do area, power and delay optimization if some error is tolerable. Approximate Computational Complexity (ACC) method based 4:2 compressor is designed for image compression gives area, delay and power reduction as 18%, 7% and 49% respectively. Area and power optimized 8*8 image compression obtained at the cost of 20% increase in error rate which is tolerable with reference to adequate PSNR.\",\"PeriodicalId\":170905,\"journal\":{\"name\":\"2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETEMS56252.2022.10093398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETEMS56252.2022.10093398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用近似方法进行计算优化是风速尺度下数字信号处理(DSP)的有效方法。本文讨论了近似方法在DSP算法块设计中的应用。在Spartan 6上的Xilinx ISE 13.2上实现近似算术块分析,如加法器和乘法器,如果一些错误是可以容忍的,它们能够进行面积,功率和延迟优化。设计了基于4:2压缩器的近似计算复杂度(Approximate Computational Complexity, ACC)方法进行图像压缩,面积、延迟和功耗分别减少18%、7%和49%。面积和功耗优化的8*8图像压缩,其代价是误差率增加20%,在适当的PSNR下是可以容忍的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computationally Optimized Approximate Computing for Signal Processing Applications
Computational optimization through approximation approach proves to be an effective way for Digital Signal Processing (DSP) at anemometric scales. Here approximation methodology is discussed to design arithmetic blocks of DSP. Implementation on Xilinx ISE 13.2 on Spartan 6 is done for approximate arithmetic block analysis like adder and multiplier which are capable to do area, power and delay optimization if some error is tolerable. Approximate Computational Complexity (ACC) method based 4:2 compressor is designed for image compression gives area, delay and power reduction as 18%, 7% and 49% respectively. Area and power optimized 8*8 image compression obtained at the cost of 20% increase in error rate which is tolerable with reference to adequate PSNR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信