不确定性与ne iporuk下界方法的抽象表述

P. Beame, Nathan Grosshans, P. McKenzie, L. Segoufin
{"title":"不确定性与ne<e:1> iporuk下界方法的抽象表述","authors":"P. Beame, Nathan Grosshans, P. McKenzie, L. Segoufin","doi":"10.1145/3013516","DOIUrl":null,"url":null,"abstract":"A formulation of Nečiporuk’s lower bound method slightly more inclusive than the usual complexity-measure-specific formulation is presented. Using this general formulation, limitations to lower bounds achievable by the method are obtained for several computation models, such as branching programs and Boolean formulas having access to a sublinear number of nondeterministic bits. In particular, it is shown that any lower bound achievable by the method of Nečiporuk for the size of nondeterministic and parity branching programs is at most O(n3/2/logn).","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Nondeterminism and An Abstract Formulation of Nečiporuk’s Lower Bound Method\",\"authors\":\"P. Beame, Nathan Grosshans, P. McKenzie, L. Segoufin\",\"doi\":\"10.1145/3013516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A formulation of Nečiporuk’s lower bound method slightly more inclusive than the usual complexity-measure-specific formulation is presented. Using this general formulation, limitations to lower bounds achievable by the method are obtained for several computation models, such as branching programs and Boolean formulas having access to a sublinear number of nondeterministic bits. In particular, it is shown that any lower bound achievable by the method of Nečiporuk for the size of nondeterministic and parity branching programs is at most O(n3/2/logn).\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3013516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3013516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种比通常的复杂性测量特定公式更具包容性的ne iporuk下界方法的公式。利用这一一般公式,得到了几种计算模型可达到的下界的限制,如分支程序和布尔公式具有访问次线性数目的不确定性位。特别地,证明了用ne iporuk方法对不确定性和奇偶性分支规划的大小所能达到的下界不超过O(n3/2/logn)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nondeterminism and An Abstract Formulation of Nečiporuk’s Lower Bound Method
A formulation of Nečiporuk’s lower bound method slightly more inclusive than the usual complexity-measure-specific formulation is presented. Using this general formulation, limitations to lower bounds achievable by the method are obtained for several computation models, such as branching programs and Boolean formulas having access to a sublinear number of nondeterministic bits. In particular, it is shown that any lower bound achievable by the method of Nečiporuk for the size of nondeterministic and parity branching programs is at most O(n3/2/logn).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信