最优规划的K *与偏阶约简

Michael Katz, Junkyu Lee
{"title":"最优规划的K *与偏阶约简","authors":"Michael Katz, Junkyu Lee","doi":"10.1609/socs.v16i1.27293","DOIUrl":null,"url":null,"abstract":"Partial order reduction techniques are successfully used for various settings in planning, such as classical planning with A* search or with decoupled search, fully-observable non-deterministic planning with LAO*, planning with resources, or even goal recognition design. Here, we continue this trend and show that partial order reduction can be used for top-quality planning with K* search. We discuss the possible pitfalls of using stubborn sets for top-quality planning and the guarantees provided. We perform an empirical evaluation that shows the proposed approach to significantly improve over the current state of the art in unordered top-quality planning. The code is available at https://github.com/IBM/kstar.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"K∗ and Partial Order Reduction for Top-Quality Planning\",\"authors\":\"Michael Katz, Junkyu Lee\",\"doi\":\"10.1609/socs.v16i1.27293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial order reduction techniques are successfully used for various settings in planning, such as classical planning with A* search or with decoupled search, fully-observable non-deterministic planning with LAO*, planning with resources, or even goal recognition design. Here, we continue this trend and show that partial order reduction can be used for top-quality planning with K* search. We discuss the possible pitfalls of using stubborn sets for top-quality planning and the guarantees provided. We perform an empirical evaluation that shows the proposed approach to significantly improve over the current state of the art in unordered top-quality planning. The code is available at https://github.com/IBM/kstar.\",\"PeriodicalId\":425645,\"journal\":{\"name\":\"Symposium on Combinatorial Search\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Combinatorial Search\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/socs.v16i1.27293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v16i1.27293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

部分阶约简技术被成功地用于规划中的各种设置,如经典规划与A*搜索或解耦搜索,完全可观察的非确定性规划与LAO*,规划与资源,甚至目标识别设计。在这里,我们继续这一趋势,并证明了偏序约简可以用于K*搜索的高质量规划。我们讨论了使用顽固集进行高质量规划可能存在的缺陷以及所提供的保证。我们进行了一个实证评估,表明所提出的方法显着改善了无序高质量规划的当前艺术状态。代码可在https://github.com/IBM/kstar上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K∗ and Partial Order Reduction for Top-Quality Planning
Partial order reduction techniques are successfully used for various settings in planning, such as classical planning with A* search or with decoupled search, fully-observable non-deterministic planning with LAO*, planning with resources, or even goal recognition design. Here, we continue this trend and show that partial order reduction can be used for top-quality planning with K* search. We discuss the possible pitfalls of using stubborn sets for top-quality planning and the guarantees provided. We perform an empirical evaluation that shows the proposed approach to significantly improve over the current state of the art in unordered top-quality planning. The code is available at https://github.com/IBM/kstar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信