基于学习的罗马尼亚语音节和重音分配方法

Diana Balc, Anamaria Beleiu, R. Potolea, C. Lemnaru
{"title":"基于学习的罗马尼亚语音节和重音分配方法","authors":"Diana Balc, Anamaria Beleiu, R. Potolea, C. Lemnaru","doi":"10.1109/ICCP.2015.7312603","DOIUrl":null,"url":null,"abstract":"This paper tackles the Romanian syllabification and stress assignment problems, and proposes an efficient machine learning based solution. We show that by designing the appropriate feature sets for each specific problem, learning algorithms achieve satisfactory accuracy rates for both problems (~92% for syllabification, ~85% for stress assignment), even for relatively small training set sizes. We have found that unigram-based features are powerful enough to characterize these problems, and therefore the introduction of bi-gram or tri-gram features (often utilized in syllabification problems for other languages) is unnecessary.","PeriodicalId":158453,"journal":{"name":"2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A learning-based approach for Romanian syllabification and stress assignment\",\"authors\":\"Diana Balc, Anamaria Beleiu, R. Potolea, C. Lemnaru\",\"doi\":\"10.1109/ICCP.2015.7312603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tackles the Romanian syllabification and stress assignment problems, and proposes an efficient machine learning based solution. We show that by designing the appropriate feature sets for each specific problem, learning algorithms achieve satisfactory accuracy rates for both problems (~92% for syllabification, ~85% for stress assignment), even for relatively small training set sizes. We have found that unigram-based features are powerful enough to characterize these problems, and therefore the introduction of bi-gram or tri-gram features (often utilized in syllabification problems for other languages) is unnecessary.\",\"PeriodicalId\":158453,\"journal\":{\"name\":\"2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2015.7312603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2015.7312603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文解决了罗马尼亚语的音节化和重音分配问题,并提出了一种高效的基于机器学习的解决方案。我们表明,通过为每个特定问题设计适当的特征集,学习算法在两个问题上都达到了令人满意的准确率(对于音节化来说~92%,对于应力分配来说~85%),即使对于相对较小的训练集也是如此。我们发现基于单字母图的特征足以描述这些问题,因此引入双字母图或三字母图特征(通常用于其他语言的音节问题)是不必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A learning-based approach for Romanian syllabification and stress assignment
This paper tackles the Romanian syllabification and stress assignment problems, and proposes an efficient machine learning based solution. We show that by designing the appropriate feature sets for each specific problem, learning algorithms achieve satisfactory accuracy rates for both problems (~92% for syllabification, ~85% for stress assignment), even for relatively small training set sizes. We have found that unigram-based features are powerful enough to characterize these problems, and therefore the introduction of bi-gram or tri-gram features (often utilized in syllabification problems for other languages) is unnecessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信