基于混合控制自然语言的高精度问答

Tiantian Gao, Paul Fodor, M. Kifer
{"title":"基于混合控制自然语言的高精度问答","authors":"Tiantian Gao, Paul Fodor, M. Kifer","doi":"10.1109/WI.2018.0-112","DOIUrl":null,"url":null,"abstract":"Knowledge representation and reasoning (KRR) is key to the vision of the intelligent Web. Unfortunately, wide deployment of KRR is hindered by the difficulty in specifying the requisite knowledge, which requires skills that most domain experts lack. A way around this problem could be to acquire knowledge automatically from documents. The difficulty is that, KRR requires high-precision knowledge and is sensitive even to small amounts of errors. Although most automatic information extraction systems developed for general text understandings have achieved remarkable results, their accuracy is still woefully inadequate for logical reasoning. A promising alternative is to ask the domain experts to author knowledge in Controlled Natural Language (CNL). Nonetheless, the quality of knowledge construction even through CNL is still grossly inadequate, the main obstacle being the multiplicity of ways the same information can be described even in a controlled language. Our previous work addressed the problem of high accuracy knowledge authoring for KRR from CNL documents by introducing the Knowledge Authoring Logic Machine (KALM). This paper develops the query aspect of KALM with the aim of getting high precision answers to CNL questions against previously authored knowledge and is tolerant to linguistic variations in the queries. To make queries more expressive and easier to formulate, we propose a hybrid CNL, i.e., a CNL with elements borrowed from formal query languages. We show that KALM achieves superior accuracy in semantic parsing of such queries.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"High Accuracy Question Answering via Hybrid Controlled Natural Language\",\"authors\":\"Tiantian Gao, Paul Fodor, M. Kifer\",\"doi\":\"10.1109/WI.2018.0-112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge representation and reasoning (KRR) is key to the vision of the intelligent Web. Unfortunately, wide deployment of KRR is hindered by the difficulty in specifying the requisite knowledge, which requires skills that most domain experts lack. A way around this problem could be to acquire knowledge automatically from documents. The difficulty is that, KRR requires high-precision knowledge and is sensitive even to small amounts of errors. Although most automatic information extraction systems developed for general text understandings have achieved remarkable results, their accuracy is still woefully inadequate for logical reasoning. A promising alternative is to ask the domain experts to author knowledge in Controlled Natural Language (CNL). Nonetheless, the quality of knowledge construction even through CNL is still grossly inadequate, the main obstacle being the multiplicity of ways the same information can be described even in a controlled language. Our previous work addressed the problem of high accuracy knowledge authoring for KRR from CNL documents by introducing the Knowledge Authoring Logic Machine (KALM). This paper develops the query aspect of KALM with the aim of getting high precision answers to CNL questions against previously authored knowledge and is tolerant to linguistic variations in the queries. To make queries more expressive and easier to formulate, we propose a hybrid CNL, i.e., a CNL with elements borrowed from formal query languages. We show that KALM achieves superior accuracy in semantic parsing of such queries.\",\"PeriodicalId\":405966,\"journal\":{\"name\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2018.0-112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.0-112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

知识表示与推理(KRR)是实现智能Web愿景的关键。不幸的是,KRR的广泛部署受到指定必要知识的困难的阻碍,这需要大多数领域专家所缺乏的技能。解决这个问题的一种方法是从文档中自动获取知识。困难的是,KRR需要高精度的知识,即使是很小的错误也很敏感。虽然大多数为一般文本理解而开发的自动信息提取系统已经取得了显著的成果,但它们在逻辑推理方面的准确性仍然严重不足。一个有希望的替代方案是请领域专家以受控自然语言(CNL)编写知识。尽管如此,即使通过CNL构建知识的质量仍然严重不足,主要障碍是即使在受控语言中也可以用多种方式描述相同的信息。我们之前的工作通过引入知识创作逻辑机(KALM)来解决CNL文档中KRR的高精度知识创作问题。本文开发了KALM的查询方面,目的是根据先前撰写的知识获得CNL问题的高精度答案,并容忍查询中的语言变化。为了使查询更具表现力和更容易表述,我们提出了一种混合CNL,即从正式查询语言中借用元素的CNL。我们证明KALM在这类查询的语义解析中达到了较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Accuracy Question Answering via Hybrid Controlled Natural Language
Knowledge representation and reasoning (KRR) is key to the vision of the intelligent Web. Unfortunately, wide deployment of KRR is hindered by the difficulty in specifying the requisite knowledge, which requires skills that most domain experts lack. A way around this problem could be to acquire knowledge automatically from documents. The difficulty is that, KRR requires high-precision knowledge and is sensitive even to small amounts of errors. Although most automatic information extraction systems developed for general text understandings have achieved remarkable results, their accuracy is still woefully inadequate for logical reasoning. A promising alternative is to ask the domain experts to author knowledge in Controlled Natural Language (CNL). Nonetheless, the quality of knowledge construction even through CNL is still grossly inadequate, the main obstacle being the multiplicity of ways the same information can be described even in a controlled language. Our previous work addressed the problem of high accuracy knowledge authoring for KRR from CNL documents by introducing the Knowledge Authoring Logic Machine (KALM). This paper develops the query aspect of KALM with the aim of getting high precision answers to CNL questions against previously authored knowledge and is tolerant to linguistic variations in the queries. To make queries more expressive and easier to formulate, we propose a hybrid CNL, i.e., a CNL with elements borrowed from formal query languages. We show that KALM achieves superior accuracy in semantic parsing of such queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信