在1立方米的室中测量核石墨的爆炸性

N. Poletaev
{"title":"在1立方米的室中测量核石墨的爆炸性","authors":"N. Poletaev","doi":"10.22227/0869-7493.2022.31.02.15-21","DOIUrl":null,"url":null,"abstract":"Introduction. Nuclear graphite poses a threat due to the formation of the graphite dust – air mixture (GDAM) during the dismantling of decommissioned nuclear reactors. However, there is no clear answer to the question on the GDAM explosibility. A review of international studies suggests that GDAM is either inexplosive or its explosibility is weak (Phylaktou H.N. et al., 2015). In this paper, the authors advance arguments for the explosion safety of GDAM.Selected research result. The authors considered a well-known result of a study on the combustion of GDAM with an average particle size of 5 μm, the concentration of about 450 g/m3 in a 1.138 m3 chamber, and an ignitionsource made by Fr. Sobbe GmbH («Sobbe 10 kJ»). The maximum overpressure ΔPmax was 0.47 bar in the chamber, and it fitted the case of an explosive air suspension, according to EN 14034-3 (1 bar = 100 kPa).Interpretation of the research result. Pressure oscillograms were compared for the following two cases: the case of the maximum manifestation of the GDAM explosion hazard (ΔPmax = 0.47 bar; dP/dt|max = 3.8 bar/s) and the case of combustion of an ignition source in the absence of air suspension (ΔPmax = 0.027 bar; dP/dt|max = 2.7 bar/s). The comparison shows that the first 20 ms of a pressure change inside the chamber is mainly due to the combustion of the ignition source: the characteristic values ΔP = 0.03 bar and (dP/dt) ≈ 3.8 bar/s are close to the «Sobbe 10kJ» combustion index in the absence of GDAM. A further increase in ΔP is accompanied by the constant or sharply decreasing value of (dP/dt), which means a monotonous decrease in the flame velocity and proves the incombustibility of GDAM.Conclusions. Due to the smallness of ΔPmax, GDAM can be considered nonexplosive under normal atmospheric conditions. Dependency diagrams, relating the pressure of combustion products and its growth to time offer important information about the combustion of the air suspension in explosion chambers under the condition of a low dust explosion hazard.","PeriodicalId":169739,"journal":{"name":"Pozharovzryvobezopasnost/Fire and Explosion Safety","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Explosibility of nuclear graphite measured in a 1 m3 chamber\",\"authors\":\"N. Poletaev\",\"doi\":\"10.22227/0869-7493.2022.31.02.15-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Nuclear graphite poses a threat due to the formation of the graphite dust – air mixture (GDAM) during the dismantling of decommissioned nuclear reactors. However, there is no clear answer to the question on the GDAM explosibility. A review of international studies suggests that GDAM is either inexplosive or its explosibility is weak (Phylaktou H.N. et al., 2015). In this paper, the authors advance arguments for the explosion safety of GDAM.Selected research result. The authors considered a well-known result of a study on the combustion of GDAM with an average particle size of 5 μm, the concentration of about 450 g/m3 in a 1.138 m3 chamber, and an ignitionsource made by Fr. Sobbe GmbH («Sobbe 10 kJ»). The maximum overpressure ΔPmax was 0.47 bar in the chamber, and it fitted the case of an explosive air suspension, according to EN 14034-3 (1 bar = 100 kPa).Interpretation of the research result. Pressure oscillograms were compared for the following two cases: the case of the maximum manifestation of the GDAM explosion hazard (ΔPmax = 0.47 bar; dP/dt|max = 3.8 bar/s) and the case of combustion of an ignition source in the absence of air suspension (ΔPmax = 0.027 bar; dP/dt|max = 2.7 bar/s). The comparison shows that the first 20 ms of a pressure change inside the chamber is mainly due to the combustion of the ignition source: the characteristic values ΔP = 0.03 bar and (dP/dt) ≈ 3.8 bar/s are close to the «Sobbe 10kJ» combustion index in the absence of GDAM. A further increase in ΔP is accompanied by the constant or sharply decreasing value of (dP/dt), which means a monotonous decrease in the flame velocity and proves the incombustibility of GDAM.Conclusions. Due to the smallness of ΔPmax, GDAM can be considered nonexplosive under normal atmospheric conditions. Dependency diagrams, relating the pressure of combustion products and its growth to time offer important information about the combustion of the air suspension in explosion chambers under the condition of a low dust explosion hazard.\",\"PeriodicalId\":169739,\"journal\":{\"name\":\"Pozharovzryvobezopasnost/Fire and Explosion Safety\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pozharovzryvobezopasnost/Fire and Explosion Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22227/0869-7493.2022.31.02.15-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pozharovzryvobezopasnost/Fire and Explosion Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22227/0869-7493.2022.31.02.15-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

介绍。核石墨在退役核反应堆拆解过程中会形成石墨粉尘-空气混合物(GDAM),对核石墨构成威胁。但是,对于GDAM的爆炸能力问题,目前还没有明确的答案。对国际研究的回顾表明,GDAM要么是非爆炸性的,要么其爆炸性较弱(Phylaktou H.N. et al., 2015)。本文对GDAM的爆炸安全性提出了论证。选定的研究成果。作者考虑了一个著名的研究结果,即平均粒径为5 μm的GDAM,在1.138 m3的燃烧室中浓度约为450 g/m3,火源由Fr. Sobbe GmbH(«Sobbe 10 kJ»)制造。根据EN 14034-3 (1 bar = 100 kPa),舱内最大超压ΔPmax为0.47 bar,适用于爆炸性空气悬架的情况。对研究结果的解释。比较了两种情况下的压力示波图:GDAM爆炸危险最大表现情况(ΔPmax = 0.47 bar;dP/dt|max = 3.8 bar/s)和无空气悬架情况下点火源燃烧情况(ΔPmax = 0.027 bar;dP/dt|max = 2.7 bar/s)。对比表明,燃烧室内压力变化的前20 ms主要是由点火源的燃烧引起的,特征值ΔP = 0.03 bar和(dP/dt)≈3.8 bar/s接近无GDAM时的«Sobbe 10kJ»燃烧指数。ΔP进一步增大时,(dP/dt)值保持不变或急剧下降,说明火焰速度单调下降,证明了gdam的不燃性。由于ΔPmax的体积较小,在正常大气条件下,GDAM可以被认为是非爆炸性的。燃烧产物的压力及其增长随时间的关系图提供了关于低粉尘爆炸危险条件下爆炸室内空气悬架燃烧的重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explosibility of nuclear graphite measured in a 1 m3 chamber
Introduction. Nuclear graphite poses a threat due to the formation of the graphite dust – air mixture (GDAM) during the dismantling of decommissioned nuclear reactors. However, there is no clear answer to the question on the GDAM explosibility. A review of international studies suggests that GDAM is either inexplosive or its explosibility is weak (Phylaktou H.N. et al., 2015). In this paper, the authors advance arguments for the explosion safety of GDAM.Selected research result. The authors considered a well-known result of a study on the combustion of GDAM with an average particle size of 5 μm, the concentration of about 450 g/m3 in a 1.138 m3 chamber, and an ignitionsource made by Fr. Sobbe GmbH («Sobbe 10 kJ»). The maximum overpressure ΔPmax was 0.47 bar in the chamber, and it fitted the case of an explosive air suspension, according to EN 14034-3 (1 bar = 100 kPa).Interpretation of the research result. Pressure oscillograms were compared for the following two cases: the case of the maximum manifestation of the GDAM explosion hazard (ΔPmax = 0.47 bar; dP/dt|max = 3.8 bar/s) and the case of combustion of an ignition source in the absence of air suspension (ΔPmax = 0.027 bar; dP/dt|max = 2.7 bar/s). The comparison shows that the first 20 ms of a pressure change inside the chamber is mainly due to the combustion of the ignition source: the characteristic values ΔP = 0.03 bar and (dP/dt) ≈ 3.8 bar/s are close to the «Sobbe 10kJ» combustion index in the absence of GDAM. A further increase in ΔP is accompanied by the constant or sharply decreasing value of (dP/dt), which means a monotonous decrease in the flame velocity and proves the incombustibility of GDAM.Conclusions. Due to the smallness of ΔPmax, GDAM can be considered nonexplosive under normal atmospheric conditions. Dependency diagrams, relating the pressure of combustion products and its growth to time offer important information about the combustion of the air suspension in explosion chambers under the condition of a low dust explosion hazard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信