非紧流形上的不动点定理

P. Hochs, Han Wang
{"title":"非紧流形上的不动点定理","authors":"P. Hochs, Han Wang","doi":"10.2140/akt.2018.3.235","DOIUrl":null,"url":null,"abstract":"We generalise the Atiyah-Segal-Singer fixed point theorem to noncompact manifolds. Using $KK$-theory, we extend the equivariant index to the noncompact setting, and obtain a fixed point formula for it. The fixed point formula is the explicit cohomological expression from Atiyah-Segal-Singer's result. In the noncompact case, however, we show in examples that this expression yields characters of infinite-dimensional representations. In one example, we realise characters of discrete series representations on the regular elements of a maximal torus, in terms of the index we define. Further results are a fixed point formula for the index pairing between equivariant $K$-theory and $K$-homology, and a non-localised expression for the index we use, in terms of deformations of principal symbols. The latter result is one of several links we find to indices of deformed symbols and operators studied by various authors.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A fixed point theorem on noncompact manifolds\",\"authors\":\"P. Hochs, Han Wang\",\"doi\":\"10.2140/akt.2018.3.235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalise the Atiyah-Segal-Singer fixed point theorem to noncompact manifolds. Using $KK$-theory, we extend the equivariant index to the noncompact setting, and obtain a fixed point formula for it. The fixed point formula is the explicit cohomological expression from Atiyah-Segal-Singer's result. In the noncompact case, however, we show in examples that this expression yields characters of infinite-dimensional representations. In one example, we realise characters of discrete series representations on the regular elements of a maximal torus, in terms of the index we define. Further results are a fixed point formula for the index pairing between equivariant $K$-theory and $K$-homology, and a non-localised expression for the index we use, in terms of deformations of principal symbols. The latter result is one of several links we find to indices of deformed symbols and operators studied by various authors.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2018.3.235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2018.3.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

将Atiyah-Segal-Singer不动点定理推广到非紧流形。利用$KK$-理论,将等变指标推广到非紧集合,得到了其不动点公式。不动点公式是Atiyah-Segal-Singer结果的显式上同调表达式。然而,在非紧的情况下,我们在例子中表明,这个表达式产生无限维表示的字符。在一个例子中,我们用定义的指标实现了极大环面的正则元素上的离散级数表示的特征。进一步的结果是关于等变K$-理论和K$-同调之间的指标配对的不动点公式,以及我们使用的指标在主符号变形方面的非局部表达式。后一个结果是我们发现的几个与各种作者研究的变形符号和算子的指标有关的联系之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fixed point theorem on noncompact manifolds
We generalise the Atiyah-Segal-Singer fixed point theorem to noncompact manifolds. Using $KK$-theory, we extend the equivariant index to the noncompact setting, and obtain a fixed point formula for it. The fixed point formula is the explicit cohomological expression from Atiyah-Segal-Singer's result. In the noncompact case, however, we show in examples that this expression yields characters of infinite-dimensional representations. In one example, we realise characters of discrete series representations on the regular elements of a maximal torus, in terms of the index we define. Further results are a fixed point formula for the index pairing between equivariant $K$-theory and $K$-homology, and a non-localised expression for the index we use, in terms of deformations of principal symbols. The latter result is one of several links we find to indices of deformed symbols and operators studied by various authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信