{"title":"一种基于密度的发型自动发现与识别方法","authors":"Jyotikrishna Dass, Monika Sharma, Ehtesham Hassan, Hiranmay Ghosh","doi":"10.1109/NCVPRIPG.2013.6776234","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for discovery and recognition of hairstyles in a collection of colored face images. We propose the use of Agglomerative clustering for automatic discovery of distinct hairstyles. Our method proposes automated approach for generation of hair, background and face-skin probability-masks for different hairstyle category without requiring manual annotation. The probability-masks based density estimates are subsequently applied for recognizing the hairstyle in a new face image. The proposed methodology has been verified with a synthetic dataset of approximately thousand images, randomly collected from the Internet.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A density based method for automatic hairstyle discovery and recognition\",\"authors\":\"Jyotikrishna Dass, Monika Sharma, Ehtesham Hassan, Hiranmay Ghosh\",\"doi\":\"10.1109/NCVPRIPG.2013.6776234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method for discovery and recognition of hairstyles in a collection of colored face images. We propose the use of Agglomerative clustering for automatic discovery of distinct hairstyles. Our method proposes automated approach for generation of hair, background and face-skin probability-masks for different hairstyle category without requiring manual annotation. The probability-masks based density estimates are subsequently applied for recognizing the hairstyle in a new face image. The proposed methodology has been verified with a synthetic dataset of approximately thousand images, randomly collected from the Internet.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A density based method for automatic hairstyle discovery and recognition
This paper presents a novel method for discovery and recognition of hairstyles in a collection of colored face images. We propose the use of Agglomerative clustering for automatic discovery of distinct hairstyles. Our method proposes automated approach for generation of hair, background and face-skin probability-masks for different hairstyle category without requiring manual annotation. The probability-masks based density estimates are subsequently applied for recognizing the hairstyle in a new face image. The proposed methodology has been verified with a synthetic dataset of approximately thousand images, randomly collected from the Internet.