六维记忆电阻HR神经元模型的多稳态及其硬件实现

Qingjie Sun, Yongbing Hu
{"title":"六维记忆电阻HR神经元模型的多稳态及其硬件实现","authors":"Qingjie Sun, Yongbing Hu","doi":"10.1109/ICEICT55736.2022.9908644","DOIUrl":null,"url":null,"abstract":"This paper proposes a new six dimensional memristor HR neuron model, the model is an improvement to the existing memristor HR model. It uses a cosine memristor and a sine memristor in neurons, respectively for the coupling and electromagnetic induction coupling. The model has no equilibrium point. Through the phase diagram and the bifurcation diagram, the Lyapunov index spectrum analyses its dynamic behavior, finding an improved memristor HR neuron model can show the boosting behavior, and changing the initial value of memristor can produce firing pattern booster to different discrete levels. The dissipation of the proposed model is studied. These patterns are homogeneous with extreme stability. Finally, the simulation results could be captured through the stm32 implementation and the oscilloscope. The results agree with the theoretical analysis.","PeriodicalId":179327,"journal":{"name":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multistable State of Six Dimensional Memristor HR Neuron Model and Its Hardware Implementation\",\"authors\":\"Qingjie Sun, Yongbing Hu\",\"doi\":\"10.1109/ICEICT55736.2022.9908644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new six dimensional memristor HR neuron model, the model is an improvement to the existing memristor HR model. It uses a cosine memristor and a sine memristor in neurons, respectively for the coupling and electromagnetic induction coupling. The model has no equilibrium point. Through the phase diagram and the bifurcation diagram, the Lyapunov index spectrum analyses its dynamic behavior, finding an improved memristor HR neuron model can show the boosting behavior, and changing the initial value of memristor can produce firing pattern booster to different discrete levels. The dissipation of the proposed model is studied. These patterns are homogeneous with extreme stability. Finally, the simulation results could be captured through the stm32 implementation and the oscilloscope. The results agree with the theoretical analysis.\",\"PeriodicalId\":179327,\"journal\":{\"name\":\"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEICT55736.2022.9908644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT55736.2022.9908644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的六维记忆电阻器HR神经元模型,该模型是对现有记忆电阻器HR模型的改进。它在神经元中使用一个余弦忆阻器和一个正弦忆阻器,分别用于耦合和电磁感应耦合。模型没有平衡点。通过相图和分岔图,Lyapunov指数谱分析了其动态行为,发现改进的忆阻器HR神经元模型可以显示增强行为,改变忆阻器的初始值可以产生不同离散水平的发射模式增强。对该模型的耗散进行了研究。这些模式是同质的,具有极高的稳定性。最后,通过stm32实现和示波器采集仿真结果。计算结果与理论分析一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multistable State of Six Dimensional Memristor HR Neuron Model and Its Hardware Implementation
This paper proposes a new six dimensional memristor HR neuron model, the model is an improvement to the existing memristor HR model. It uses a cosine memristor and a sine memristor in neurons, respectively for the coupling and electromagnetic induction coupling. The model has no equilibrium point. Through the phase diagram and the bifurcation diagram, the Lyapunov index spectrum analyses its dynamic behavior, finding an improved memristor HR neuron model can show the boosting behavior, and changing the initial value of memristor can produce firing pattern booster to different discrete levels. The dissipation of the proposed model is studied. These patterns are homogeneous with extreme stability. Finally, the simulation results could be captured through the stm32 implementation and the oscilloscope. The results agree with the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信