{"title":"使用期望最大化学习动态模型","authors":"B. North, A. Blake","doi":"10.1109/ICCV.1998.710747","DOIUrl":null,"url":null,"abstract":"Tracking with deformable contours in a filtering framework requires a dynamical model for prediction. For any given application, tracking is improved by having an accurate model, learned from training data. We develop a method for learning dynamical models from training sequences, explicitly taking account of the fact that training data are noisy measurements and not true states. By introducing an 'augmented-state smoothing filter' we show how the technique of Expectation-Maximisation can be applied to this problem, and show that the resulting algorithm produces more robust and accurate tracking.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Learning dynamical models using expectation-maximisation\",\"authors\":\"B. North, A. Blake\",\"doi\":\"10.1109/ICCV.1998.710747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking with deformable contours in a filtering framework requires a dynamical model for prediction. For any given application, tracking is improved by having an accurate model, learned from training data. We develop a method for learning dynamical models from training sequences, explicitly taking account of the fact that training data are noisy measurements and not true states. By introducing an 'augmented-state smoothing filter' we show how the technique of Expectation-Maximisation can be applied to this problem, and show that the resulting algorithm produces more robust and accurate tracking.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning dynamical models using expectation-maximisation
Tracking with deformable contours in a filtering framework requires a dynamical model for prediction. For any given application, tracking is improved by having an accurate model, learned from training data. We develop a method for learning dynamical models from training sequences, explicitly taking account of the fact that training data are noisy measurements and not true states. By introducing an 'augmented-state smoothing filter' we show how the technique of Expectation-Maximisation can be applied to this problem, and show that the resulting algorithm produces more robust and accurate tracking.