使用期望最大化学习动态模型

B. North, A. Blake
{"title":"使用期望最大化学习动态模型","authors":"B. North, A. Blake","doi":"10.1109/ICCV.1998.710747","DOIUrl":null,"url":null,"abstract":"Tracking with deformable contours in a filtering framework requires a dynamical model for prediction. For any given application, tracking is improved by having an accurate model, learned from training data. We develop a method for learning dynamical models from training sequences, explicitly taking account of the fact that training data are noisy measurements and not true states. By introducing an 'augmented-state smoothing filter' we show how the technique of Expectation-Maximisation can be applied to this problem, and show that the resulting algorithm produces more robust and accurate tracking.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Learning dynamical models using expectation-maximisation\",\"authors\":\"B. North, A. Blake\",\"doi\":\"10.1109/ICCV.1998.710747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking with deformable contours in a filtering framework requires a dynamical model for prediction. For any given application, tracking is improved by having an accurate model, learned from training data. We develop a method for learning dynamical models from training sequences, explicitly taking account of the fact that training data are noisy measurements and not true states. By introducing an 'augmented-state smoothing filter' we show how the technique of Expectation-Maximisation can be applied to this problem, and show that the resulting algorithm produces more robust and accurate tracking.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

在滤波框架中跟踪可变形轮廓需要动态模型进行预测。对于任何给定的应用程序,通过从训练数据中学习准确的模型来改进跟踪。我们开发了一种从训练序列中学习动态模型的方法,明确地考虑到训练数据是有噪声的测量值而不是真实状态。通过引入“增强状态平滑滤波器”,我们展示了期望最大化技术如何应用于此问题,并展示了生成的算法产生更鲁棒和准确的跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning dynamical models using expectation-maximisation
Tracking with deformable contours in a filtering framework requires a dynamical model for prediction. For any given application, tracking is improved by having an accurate model, learned from training data. We develop a method for learning dynamical models from training sequences, explicitly taking account of the fact that training data are noisy measurements and not true states. By introducing an 'augmented-state smoothing filter' we show how the technique of Expectation-Maximisation can be applied to this problem, and show that the resulting algorithm produces more robust and accurate tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信