案例研究:QSAR模型中的匹配分子对方法

F. Adilova, Alisher Ikramov
{"title":"案例研究:QSAR模型中的匹配分子对方法","authors":"F. Adilova, Alisher Ikramov","doi":"10.1109/ICISCT.2017.8188583","DOIUrl":null,"url":null,"abstract":"Modern drug discovery organizations generate large volumes of SAR data. A promising methodology that can be used to mine this chemical data to identify novel structure-activity relationships is the matched molecular pair (MMP) methodology. However, before the full potential of the MMP methodology can be utilized, a MMP identification method that is capable of identifying all MMPs in large chemical data sets on modest computational hardware is required.","PeriodicalId":173523,"journal":{"name":"2017 International Conference on Information Science and Communications Technologies (ICISCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case study: Matched molecular pairs approach in QSAR modelling\",\"authors\":\"F. Adilova, Alisher Ikramov\",\"doi\":\"10.1109/ICISCT.2017.8188583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern drug discovery organizations generate large volumes of SAR data. A promising methodology that can be used to mine this chemical data to identify novel structure-activity relationships is the matched molecular pair (MMP) methodology. However, before the full potential of the MMP methodology can be utilized, a MMP identification method that is capable of identifying all MMPs in large chemical data sets on modest computational hardware is required.\",\"PeriodicalId\":173523,\"journal\":{\"name\":\"2017 International Conference on Information Science and Communications Technologies (ICISCT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Information Science and Communications Technologies (ICISCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCT.2017.8188583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Information Science and Communications Technologies (ICISCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCT.2017.8188583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代药物发现组织产生大量的SAR数据。匹配分子对(MMP)方法是一种很有前途的方法,可以用来挖掘这些化学数据,以确定新的结构-活性关系。然而,在充分利用MMP方法的潜力之前,需要一种能够在中等计算硬件上识别大型化学数据集中所有mmmp的MMP识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Case study: Matched molecular pairs approach in QSAR modelling
Modern drug discovery organizations generate large volumes of SAR data. A promising methodology that can be used to mine this chemical data to identify novel structure-activity relationships is the matched molecular pair (MMP) methodology. However, before the full potential of the MMP methodology can be utilized, a MMP identification method that is capable of identifying all MMPs in large chemical data sets on modest computational hardware is required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信