基于深频感知的立体视频无参考质量评价

Shuai Xiao, Jiabao Wen, Jiachen Yang, Yan Zhou
{"title":"基于深频感知的立体视频无参考质量评价","authors":"Shuai Xiao, Jiabao Wen, Jiachen Yang, Yan Zhou","doi":"10.1145/3552469.3555711","DOIUrl":null,"url":null,"abstract":"The purpose of stereo video quality assessment (SVQA) is to easily and quickly measure the quality of stereo video, and strive to reach a consensus with human visual perception. Stereo video contains more perceptual information and involves more visual perception theory than 2D image/video,making SVQA more challenging. Aiming at the effect of distortion on the frequency domain characteristics of stereo video, a SVQA method based on frequency domain depth perception is proposed. Specifically, the frequency domain is utilized while minimizing the changes in the existing network structure to realize the in-depth exploration of the frequency domain characteristics without changing the original frame size of stereo video. Experiments are carried out on three public stereo video databases, namely NAMA3DS1-COSPAD1 database, WaterlooIVC 3D Video Phase I database, and QI-SVQA database. From the experimental results, it can be seen that the proposed method has good quality prediction ability, especially on asymmetric compressed stereo video databases.","PeriodicalId":296389,"journal":{"name":"Proceedings of the 2nd Workshop on Quality of Experience in Visual Multimedia Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"No-Reference Quality Assessment of Stereoscopic Video Based on Deep Frequency Perception\",\"authors\":\"Shuai Xiao, Jiabao Wen, Jiachen Yang, Yan Zhou\",\"doi\":\"10.1145/3552469.3555711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of stereo video quality assessment (SVQA) is to easily and quickly measure the quality of stereo video, and strive to reach a consensus with human visual perception. Stereo video contains more perceptual information and involves more visual perception theory than 2D image/video,making SVQA more challenging. Aiming at the effect of distortion on the frequency domain characteristics of stereo video, a SVQA method based on frequency domain depth perception is proposed. Specifically, the frequency domain is utilized while minimizing the changes in the existing network structure to realize the in-depth exploration of the frequency domain characteristics without changing the original frame size of stereo video. Experiments are carried out on three public stereo video databases, namely NAMA3DS1-COSPAD1 database, WaterlooIVC 3D Video Phase I database, and QI-SVQA database. From the experimental results, it can be seen that the proposed method has good quality prediction ability, especially on asymmetric compressed stereo video databases.\",\"PeriodicalId\":296389,\"journal\":{\"name\":\"Proceedings of the 2nd Workshop on Quality of Experience in Visual Multimedia Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Workshop on Quality of Experience in Visual Multimedia Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3552469.3555711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Quality of Experience in Visual Multimedia Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3552469.3555711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

立体视频质量评估(SVQA)的目的是方便、快速地测量立体视频的质量,力求与人类视觉感知达成共识。与2D图像/视频相比,立体视频包含更多的感知信息,涉及更多的视觉感知理论,使得SVQA更具挑战性。针对失真对立体视频频域特性的影响,提出了一种基于频域深度感知的SVQA方法。具体来说,就是在尽量减少对现有网络结构变化的同时,利用频域,在不改变立体视频原有帧长的情况下,实现对频域特征的深入挖掘。实验在NAMA3DS1-COSPAD1、WaterlooIVC 3D video Phase I、QI-SVQA三个公共立体视频数据库上进行。实验结果表明,该方法具有较好的质量预测能力,特别是在非对称压缩立体视频数据库上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No-Reference Quality Assessment of Stereoscopic Video Based on Deep Frequency Perception
The purpose of stereo video quality assessment (SVQA) is to easily and quickly measure the quality of stereo video, and strive to reach a consensus with human visual perception. Stereo video contains more perceptual information and involves more visual perception theory than 2D image/video,making SVQA more challenging. Aiming at the effect of distortion on the frequency domain characteristics of stereo video, a SVQA method based on frequency domain depth perception is proposed. Specifically, the frequency domain is utilized while minimizing the changes in the existing network structure to realize the in-depth exploration of the frequency domain characteristics without changing the original frame size of stereo video. Experiments are carried out on three public stereo video databases, namely NAMA3DS1-COSPAD1 database, WaterlooIVC 3D Video Phase I database, and QI-SVQA database. From the experimental results, it can be seen that the proposed method has good quality prediction ability, especially on asymmetric compressed stereo video databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信