生物医学图像的盲确定性压缩感知

H. Zanddizari, Dipayan Mitra, S. Rajan
{"title":"生物医学图像的盲确定性压缩感知","authors":"H. Zanddizari, Dipayan Mitra, S. Rajan","doi":"10.1109/MeMeA49120.2020.9137191","DOIUrl":null,"url":null,"abstract":"Compressive sensing (CS) enables us to reconstruct a signal from a few number of measurements obtained from a random or deterministic measurement matrix. Knowledge of the sparsifying basis of the signal is required for the recovery process. In this work, we use a recently developed deterministic measurement matrix and demonstrate recovery of the original signal from compressed samples without the knowledge of the sparsifying basis or the order of sparsity. We experimented this recovery on the Biomedical images. Using smoothed ℓ0-norm (SL0) as a recovery algorithm, the original images were recovered from CS measurements with high quality.","PeriodicalId":152478,"journal":{"name":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Blind Deterministic Compressive Sensing for Biomedical Images\",\"authors\":\"H. Zanddizari, Dipayan Mitra, S. Rajan\",\"doi\":\"10.1109/MeMeA49120.2020.9137191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing (CS) enables us to reconstruct a signal from a few number of measurements obtained from a random or deterministic measurement matrix. Knowledge of the sparsifying basis of the signal is required for the recovery process. In this work, we use a recently developed deterministic measurement matrix and demonstrate recovery of the original signal from compressed samples without the knowledge of the sparsifying basis or the order of sparsity. We experimented this recovery on the Biomedical images. Using smoothed ℓ0-norm (SL0) as a recovery algorithm, the original images were recovered from CS measurements with high quality.\",\"PeriodicalId\":152478,\"journal\":{\"name\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA49120.2020.9137191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA49120.2020.9137191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

压缩感知(CS)使我们能够从从随机或确定性测量矩阵中获得的少量测量中重建信号。在恢复过程中,需要了解信号的稀疏基础。在这项工作中,我们使用了最近开发的确定性测量矩阵,并演示了从压缩样本中恢复原始信号的方法,而无需了解稀疏化基或稀疏度的顺序。我们在生物医学图像上进行了这种恢复实验。采用光滑的0-范数(SL0)作为恢复算法,对CS测量的原始图像进行了高质量的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind Deterministic Compressive Sensing for Biomedical Images
Compressive sensing (CS) enables us to reconstruct a signal from a few number of measurements obtained from a random or deterministic measurement matrix. Knowledge of the sparsifying basis of the signal is required for the recovery process. In this work, we use a recently developed deterministic measurement matrix and demonstrate recovery of the original signal from compressed samples without the knowledge of the sparsifying basis or the order of sparsity. We experimented this recovery on the Biomedical images. Using smoothed ℓ0-norm (SL0) as a recovery algorithm, the original images were recovered from CS measurements with high quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信