Riesa Krisna Astuti Sakir
{"title":"Pengujian Long-Short Term Memory (LSTM) Pada Prediksi Trafik Lalu Lintas Menggunakan Multi Server","authors":"Riesa Krisna Astuti Sakir","doi":"10.31963/elekterika.v20i1.4242","DOIUrl":null,"url":null,"abstract":"This study presents a test of the long short term memory (LSTM) algorithm on traffic prediction with multi edge server and cloud server architectures. IoT sensors located on the roadside such as cameras and location data on each driver are used and stored in the data center. When a driver sends a travel time request to a nearby edge server, traffic predictions will be made on the edge server or cloud server. Server selection is made based on the destination location of the driver's request. If the destination is in the edge server area, traffic predictions are made on the edge server. However, if the destination is in the cloud server area, traffic predictions are made on the cloud server. Then to predict traffic traffic is done with LSTM. following modeling is made with a density of 128 and a density of 256. By learning from previous traffic, LSTM with a greater density gets a proportion of errors, namely RMSE 10.78%, MAE 8.24%, and MAPE 19.87%. ","PeriodicalId":316017,"journal":{"name":"Jurnal Teknologi Elekterika","volume":"59 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Elekterika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31963/elekterika.v20i1.4242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种长短期记忆(LSTM)算法在多边缘服务器和云服务器架构下的流量预测测试。位于路边的物联网传感器,如摄像头和每个司机的位置数据,被使用并存储在数据中心。当驾驶员向附近的边缘服务器发送旅行时间请求时,将在边缘服务器或云服务器上进行流量预测。服务器选择是基于驱动程序请求的目的地位置。如果目的地位于边缘服务器区域,则在边缘服务器上进行流量预测。但是,如果目的地位于云服务器区域,则在云服务器上进行流量预测。然后利用LSTM进行流量预测。下面的建模是用密度128和密度256。通过学习之前的流量,密度较大的LSTM得到的误差比例为RMSE 10.78%, MAE 8.24%, MAPE 19.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pengujian Long-Short Term Memory (LSTM) Pada Prediksi Trafik Lalu Lintas Menggunakan Multi Server
This study presents a test of the long short term memory (LSTM) algorithm on traffic prediction with multi edge server and cloud server architectures. IoT sensors located on the roadside such as cameras and location data on each driver are used and stored in the data center. When a driver sends a travel time request to a nearby edge server, traffic predictions will be made on the edge server or cloud server. Server selection is made based on the destination location of the driver's request. If the destination is in the edge server area, traffic predictions are made on the edge server. However, if the destination is in the cloud server area, traffic predictions are made on the cloud server. Then to predict traffic traffic is done with LSTM. following modeling is made with a density of 128 and a density of 256. By learning from previous traffic, LSTM with a greater density gets a proportion of errors, namely RMSE 10.78%, MAE 8.24%, and MAPE 19.87%. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信