改进的重尾背景高光谱异常检测

S. Adler-Golden
{"title":"改进的重尾背景高光谱异常检测","authors":"S. Adler-Golden","doi":"10.1109/WHISPERS.2009.5289019","DOIUrl":null,"url":null,"abstract":"A new metric for anomaly detection in hyperspectral imagery is developed to account for anisotropic heavy tails in covariance-whitened data. The anisotropy, consisting of a variation in tail heaviness with principal component number, commonly occurs when the number of linearly independent components representing the data to within the noise level is less than the number of data dimensions. The detection metric is generated by representing the probability density function of the data with an empirical anisotropic super-Gaussian model for the probability density function. Its performance exceeds that of the RX and Subspace RX methods in examples from CAP ARCHER and HyMap imagery.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Improved hyperspectral anomaly detection in heavy-tailed backgrounds\",\"authors\":\"S. Adler-Golden\",\"doi\":\"10.1109/WHISPERS.2009.5289019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new metric for anomaly detection in hyperspectral imagery is developed to account for anisotropic heavy tails in covariance-whitened data. The anisotropy, consisting of a variation in tail heaviness with principal component number, commonly occurs when the number of linearly independent components representing the data to within the noise level is less than the number of data dimensions. The detection metric is generated by representing the probability density function of the data with an empirical anisotropic super-Gaussian model for the probability density function. Its performance exceeds that of the RX and Subspace RX methods in examples from CAP ARCHER and HyMap imagery.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5289019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

针对协方差白化数据中的各向异性重尾现象,提出了一种新的高光谱图像异常检测度量。各向异性由尾重随主成分数的变化组成,通常发生在表示噪声级内数据的线性独立分量的数量小于数据维数的情况下。用概率密度函数的经验各向异性超高斯模型来表示数据的概率密度函数,从而生成检测度量。在CAP ARCHER和HyMap图像示例中,其性能优于RX和Subspace RX方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved hyperspectral anomaly detection in heavy-tailed backgrounds
A new metric for anomaly detection in hyperspectral imagery is developed to account for anisotropic heavy tails in covariance-whitened data. The anisotropy, consisting of a variation in tail heaviness with principal component number, commonly occurs when the number of linearly independent components representing the data to within the noise level is less than the number of data dimensions. The detection metric is generated by representing the probability density function of the data with an empirical anisotropic super-Gaussian model for the probability density function. Its performance exceeds that of the RX and Subspace RX methods in examples from CAP ARCHER and HyMap imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信