网络拥塞感知在线业务功能链布局与负载均衡

Xiaojun Shang, Zhenhua Liu, Yuanyuan Yang
{"title":"网络拥塞感知在线业务功能链布局与负载均衡","authors":"Xiaojun Shang, Zhenhua Liu, Yuanyuan Yang","doi":"10.1145/3337821.3337850","DOIUrl":null,"url":null,"abstract":"Emerging virtual network functions (VNFs) introduce new flexibility and scalability into traditional middlebox. Specifically, middleboxes are virtualized as software-based platforms running on commodity servers known as network points of presence (N-PoPs). Traditional network services are therefore realized by chained VNFs, i.e., service function chains (SFCs), running on potentially multiple N-PoPs. SFCs can be flexibly placed and routed to reduce operating cost. However, excessively pursuing low cost may incur congestion on some popular N-PoPs and links, which results in performance degradation or even violation of the service level of agreements. In this paper, we first propose an optimization problem for joint SFC placement and routing. Given the problem is NP-hard, we design an approximation algorithm named candidate path selection (CPS) with a theoretical performance guarantee. We then propose an online optimization problem for placement of SFCs with fast demand fluctuation. The problem concerns migration costs of VNFs between time slots, and we design an online candidate path selection (OCPS) algorithm to handle it. Extensive simulation results highlight that the CPS and OCPS algorithms provide efficient placement and routing of SFCs comparable to the optimal solution.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Network Congestion-aware Online Service Function Chain Placement and Load Balancing\",\"authors\":\"Xiaojun Shang, Zhenhua Liu, Yuanyuan Yang\",\"doi\":\"10.1145/3337821.3337850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging virtual network functions (VNFs) introduce new flexibility and scalability into traditional middlebox. Specifically, middleboxes are virtualized as software-based platforms running on commodity servers known as network points of presence (N-PoPs). Traditional network services are therefore realized by chained VNFs, i.e., service function chains (SFCs), running on potentially multiple N-PoPs. SFCs can be flexibly placed and routed to reduce operating cost. However, excessively pursuing low cost may incur congestion on some popular N-PoPs and links, which results in performance degradation or even violation of the service level of agreements. In this paper, we first propose an optimization problem for joint SFC placement and routing. Given the problem is NP-hard, we design an approximation algorithm named candidate path selection (CPS) with a theoretical performance guarantee. We then propose an online optimization problem for placement of SFCs with fast demand fluctuation. The problem concerns migration costs of VNFs between time slots, and we design an online candidate path selection (OCPS) algorithm to handle it. Extensive simulation results highlight that the CPS and OCPS algorithms provide efficient placement and routing of SFCs comparable to the optimal solution.\",\"PeriodicalId\":405273,\"journal\":{\"name\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3337821.3337850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

新兴的虚拟网络功能(VNFs)为传统的中间件带来了新的灵活性和可扩展性。具体来说,中间件被虚拟化为运行在称为网络存在点(n - pop)的商用服务器上的基于软件的平台。因此,传统的网络业务是通过链式VNFs实现的,即业务功能链(sfc),可能运行在多个n - pop上。SFCs可以灵活地放置和路由,以降低运营成本。然而,过度追求低成本可能会导致一些流行的n - pop和链路拥塞,从而导致性能下降甚至违反协议的服务水平。在本文中,我们首先提出了一个联合SFC布局和路由的优化问题。考虑到问题是np困难的,我们设计了一种具有理论性能保证的近似算法候选路径选择(CPS)。然后,我们提出了一个快速需求波动的sfc的在线优化问题。该问题涉及VNFs在时隙间的迁移成本,我们设计了一种在线候选路径选择(OCPS)算法来处理该问题。大量的仿真结果表明,CPS和OCPS算法提供了与最优解决方案相当的sfc的有效放置和路由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Congestion-aware Online Service Function Chain Placement and Load Balancing
Emerging virtual network functions (VNFs) introduce new flexibility and scalability into traditional middlebox. Specifically, middleboxes are virtualized as software-based platforms running on commodity servers known as network points of presence (N-PoPs). Traditional network services are therefore realized by chained VNFs, i.e., service function chains (SFCs), running on potentially multiple N-PoPs. SFCs can be flexibly placed and routed to reduce operating cost. However, excessively pursuing low cost may incur congestion on some popular N-PoPs and links, which results in performance degradation or even violation of the service level of agreements. In this paper, we first propose an optimization problem for joint SFC placement and routing. Given the problem is NP-hard, we design an approximation algorithm named candidate path selection (CPS) with a theoretical performance guarantee. We then propose an online optimization problem for placement of SFCs with fast demand fluctuation. The problem concerns migration costs of VNFs between time slots, and we design an online candidate path selection (OCPS) algorithm to handle it. Extensive simulation results highlight that the CPS and OCPS algorithms provide efficient placement and routing of SFCs comparable to the optimal solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信