相等树木大科和直径的测定

Z. Stanić
{"title":"相等树木大科和直径的测定","authors":"Z. Stanić","doi":"10.2298/PIM0693029S","DOIUrl":null,"url":null,"abstract":"We consider the problem of determining all the members of an arbitrary family of equiseparable trees. We introduce the concept of satura- tion (based on the number partitions). After that, we use the same concept to obtain the least upper bound for the difference in the diameters of two equi- separable trees with m edges. We prove that this bound is equal to (m� 4)/3, where m is the size of trees.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DETERMINATION OF LARGE FAMILIES AND DIAMETER OF EQUISEPARABLE TREES\",\"authors\":\"Z. Stanić\",\"doi\":\"10.2298/PIM0693029S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of determining all the members of an arbitrary family of equiseparable trees. We introduce the concept of satura- tion (based on the number partitions). After that, we use the same concept to obtain the least upper bound for the difference in the diameters of two equi- separable trees with m edges. We prove that this bound is equal to (m� 4)/3, where m is the size of trees.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM0693029S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM0693029S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑确定任意相等树族的所有成员的问题。我们引入饱和的概念(基于数字分区)。然后,我们用同样的概念求出了两棵有m条边的等价可分树的直径差的最小上界。我们证明这个边界等于(m - 4)/3,其中m是树的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DETERMINATION OF LARGE FAMILIES AND DIAMETER OF EQUISEPARABLE TREES
We consider the problem of determining all the members of an arbitrary family of equiseparable trees. We introduce the concept of satura- tion (based on the number partitions). After that, we use the same concept to obtain the least upper bound for the difference in the diameters of two equi- separable trees with m edges. We prove that this bound is equal to (m� 4)/3, where m is the size of trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信