基于低秩逼近和主成分分析的概率潮流分析

Jirasak Laowanitwattana, S. Uatrongjit
{"title":"基于低秩逼近和主成分分析的概率潮流分析","authors":"Jirasak Laowanitwattana, S. Uatrongjit","doi":"10.1109/ICPEI49860.2020.9431554","DOIUrl":null,"url":null,"abstract":"Probabilistic power flow (PPF) analysis is usually applied for evaluating the effects of uncertain parameters on power system performances. This paper presents a technique to enhance the arbitrary polynomial chaos expansion (aPCE) based PPF analysis technique when applying to system with many uncertain parameters. The proposed method represents a power system response as low rank approximation (LRA). In addition, the principle component analysis (PCA) is applied to reduce the number of uncertain parameters and also de-correlate them. This combination enables the proposed method to perform PPF of the power system having large number of uncertain parameters. Based on preliminary numerical results on the modified IEEE 57-bus system, it can be noticed that the proposed modified method is able to find accurate statistical characteristics of the responses but uses less computation time compared to the MCS based PPF analysis.","PeriodicalId":342582,"journal":{"name":"2020 International Conference on Power, Energy and Innovations (ICPEI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Power Flow Analysis Based on Low Rank Approximation and Principle Component Analysis\",\"authors\":\"Jirasak Laowanitwattana, S. Uatrongjit\",\"doi\":\"10.1109/ICPEI49860.2020.9431554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic power flow (PPF) analysis is usually applied for evaluating the effects of uncertain parameters on power system performances. This paper presents a technique to enhance the arbitrary polynomial chaos expansion (aPCE) based PPF analysis technique when applying to system with many uncertain parameters. The proposed method represents a power system response as low rank approximation (LRA). In addition, the principle component analysis (PCA) is applied to reduce the number of uncertain parameters and also de-correlate them. This combination enables the proposed method to perform PPF of the power system having large number of uncertain parameters. Based on preliminary numerical results on the modified IEEE 57-bus system, it can be noticed that the proposed modified method is able to find accurate statistical characteristics of the responses but uses less computation time compared to the MCS based PPF analysis.\",\"PeriodicalId\":342582,\"journal\":{\"name\":\"2020 International Conference on Power, Energy and Innovations (ICPEI)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Power, Energy and Innovations (ICPEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPEI49860.2020.9431554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Power, Energy and Innovations (ICPEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEI49860.2020.9431554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

概率潮流分析通常用于评价不确定参数对电力系统性能的影响。本文提出了一种改进基于任意多项式混沌展开(aPCE)的PPF分析技术的方法,并将其应用于具有多不确定参数的系统。该方法将电力系统的响应表示为低秩近似(LRA)。此外,应用主成分分析(PCA)来减少不确定参数的数量并去相关。这种组合使得所提方法能够对具有大量不确定参数的电力系统进行PPF。基于改进后的IEEE 57总线系统的初步数值结果表明,与基于MCS的PPF分析相比,改进后的方法能够准确地找到响应的统计特征,且计算时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Power Flow Analysis Based on Low Rank Approximation and Principle Component Analysis
Probabilistic power flow (PPF) analysis is usually applied for evaluating the effects of uncertain parameters on power system performances. This paper presents a technique to enhance the arbitrary polynomial chaos expansion (aPCE) based PPF analysis technique when applying to system with many uncertain parameters. The proposed method represents a power system response as low rank approximation (LRA). In addition, the principle component analysis (PCA) is applied to reduce the number of uncertain parameters and also de-correlate them. This combination enables the proposed method to perform PPF of the power system having large number of uncertain parameters. Based on preliminary numerical results on the modified IEEE 57-bus system, it can be noticed that the proposed modified method is able to find accurate statistical characteristics of the responses but uses less computation time compared to the MCS based PPF analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信