AM++:通用主动信息框架

Jeremiah Willcock, T. Hoefler, N. Edmonds, A. Lumsdaine
{"title":"AM++:通用主动信息框架","authors":"Jeremiah Willcock, T. Hoefler, N. Edmonds, A. Lumsdaine","doi":"10.1145/1854273.1854323","DOIUrl":null,"url":null,"abstract":"Active messages have proven to be an effective approach for certain communication problems in high performance computing. Many MPI implementations, as well as runtimes for Partitioned Global Address Space languages, use active messages in their low-level transport layers. However, most active message frameworks have low-level programming interfaces that require significant programming effort to use directly in applications and that also prevent optimization opportunities. In this paper we present AM++, a new user-level library for active messages based on generic programming techniques. Our library allows message handlers to be run in an explicit loop that can be optimized and vectorized by the compiler and that can also be executed in parallel on multicore architectures. Runtime optimizations, such as message combining and filtering, are also provided by the library, removing the need to implement that functionality at the application level. Evaluation of AM++ with distributed-memory graph algorithms shows the usability benefits provided by these library features, as well as their performance advantages.","PeriodicalId":422461,"journal":{"name":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"AM++: A generalized active message framework\",\"authors\":\"Jeremiah Willcock, T. Hoefler, N. Edmonds, A. Lumsdaine\",\"doi\":\"10.1145/1854273.1854323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active messages have proven to be an effective approach for certain communication problems in high performance computing. Many MPI implementations, as well as runtimes for Partitioned Global Address Space languages, use active messages in their low-level transport layers. However, most active message frameworks have low-level programming interfaces that require significant programming effort to use directly in applications and that also prevent optimization opportunities. In this paper we present AM++, a new user-level library for active messages based on generic programming techniques. Our library allows message handlers to be run in an explicit loop that can be optimized and vectorized by the compiler and that can also be executed in parallel on multicore architectures. Runtime optimizations, such as message combining and filtering, are also provided by the library, removing the need to implement that functionality at the application level. Evaluation of AM++ with distributed-memory graph algorithms shows the usability benefits provided by these library features, as well as their performance advantages.\",\"PeriodicalId\":422461,\"journal\":{\"name\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1854273.1854323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1854273.1854323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

事实证明,主动报文是解决高性能计算中某些通信问题的有效方法。许多 MPI 实现以及分区全局地址空间语言的运行时都在其底层传输层中使用了主动报文。然而,大多数主动消息框架都有低级编程接口,直接在应用程序中使用需要大量编程工作,同时也阻碍了优化机会。在本文中,我们介绍了 AM++,一个基于通用编程技术的新用户级主动消息库。我们的库允许消息处理程序在显式循环中运行,编译器可对其进行优化和矢量化,也可在多核架构上并行执行。运行时优化(如消息合并和过滤)也由该库提供,从而无需在应用层实现该功能。利用分布式内存图算法对 AM++ 进行的评估表明,这些库功能不仅具有性能优势,还具有可用性优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AM++: A generalized active message framework
Active messages have proven to be an effective approach for certain communication problems in high performance computing. Many MPI implementations, as well as runtimes for Partitioned Global Address Space languages, use active messages in their low-level transport layers. However, most active message frameworks have low-level programming interfaces that require significant programming effort to use directly in applications and that also prevent optimization opportunities. In this paper we present AM++, a new user-level library for active messages based on generic programming techniques. Our library allows message handlers to be run in an explicit loop that can be optimized and vectorized by the compiler and that can also be executed in parallel on multicore architectures. Runtime optimizations, such as message combining and filtering, are also provided by the library, removing the need to implement that functionality at the application level. Evaluation of AM++ with distributed-memory graph algorithms shows the usability benefits provided by these library features, as well as their performance advantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信