有限广义Dirichlet混合模型的变分分量分裂方法

Wentao Fan, N. Bouguila
{"title":"有限广义Dirichlet混合模型的变分分量分裂方法","authors":"Wentao Fan, N. Bouguila","doi":"10.1109/ICCITECHNOL.2012.6285806","DOIUrl":null,"url":null,"abstract":"In this paper, a component splitting and local model selection method is proposed to address the mission of learning and selecting generalized Dirichlet (GD) mixture model with feature selection in an incremental variational way. Under the proposed principled variational framework, we simultaneously estimate, in a closed-form, all the involved parameters and determine the complexity (i.e. both model and features selection) of the GD mixture. The effectiveness of the proposed approach is evaluated using synthetic data as well as real a challenging application involving image categorization.","PeriodicalId":435718,"journal":{"name":"2012 International Conference on Communications and Information Technology (ICCIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A variational component splitting approach for finite generalized Dirichlet mixture models\",\"authors\":\"Wentao Fan, N. Bouguila\",\"doi\":\"10.1109/ICCITECHNOL.2012.6285806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a component splitting and local model selection method is proposed to address the mission of learning and selecting generalized Dirichlet (GD) mixture model with feature selection in an incremental variational way. Under the proposed principled variational framework, we simultaneously estimate, in a closed-form, all the involved parameters and determine the complexity (i.e. both model and features selection) of the GD mixture. The effectiveness of the proposed approach is evaluated using synthetic data as well as real a challenging application involving image categorization.\",\"PeriodicalId\":435718,\"journal\":{\"name\":\"2012 International Conference on Communications and Information Technology (ICCIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Communications and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHNOL.2012.6285806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communications and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHNOL.2012.6285806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对以增量变分方式学习和选择具有特征选择的广义Dirichlet (GD)混合模型的问题,提出了一种成分分割和局部模型选择方法。在提出的原则变分框架下,我们同时以封闭形式估计所有涉及的参数,并确定GD混合物的复杂性(即模型和特征选择)。利用合成数据以及涉及图像分类的具有挑战性的实际应用来评估所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variational component splitting approach for finite generalized Dirichlet mixture models
In this paper, a component splitting and local model selection method is proposed to address the mission of learning and selecting generalized Dirichlet (GD) mixture model with feature selection in an incremental variational way. Under the proposed principled variational framework, we simultaneously estimate, in a closed-form, all the involved parameters and determine the complexity (i.e. both model and features selection) of the GD mixture. The effectiveness of the proposed approach is evaluated using synthetic data as well as real a challenging application involving image categorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信