为CSI反馈学习可变速率代码

Heasung Kim, Hyeji Kim, G. Veciana
{"title":"为CSI反馈学习可变速率代码","authors":"Heasung Kim, Hyeji Kim, G. Veciana","doi":"10.1109/GLOBECOM48099.2022.10000622","DOIUrl":null,"url":null,"abstract":"We observe that current Deep Learning (DL)-based Channel State Information (CSI) encoder and decoder architectures achieve a distortion which is highly channel-dependent. To exploit this, we propose a novel learning-based variable-rate coding scheme to reduce overheads associated with CSI feedback. To that end, we propose an architecture which combines (a) training an efficient predictor for the distortion rate tradeoffs achievable for a given channel, and (b) optimization of a decision logic which allocates rates based on the predicted distortion. We evaluate our approach on various wireless channel datasets including the 3GPP 3D channel model and COST2100 with Massive MIMO channel model, and show significant potential reductions of up to 20% in the CSI feedback overhead.","PeriodicalId":313199,"journal":{"name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Variable-Rate Codes for CSI Feedback\",\"authors\":\"Heasung Kim, Hyeji Kim, G. Veciana\",\"doi\":\"10.1109/GLOBECOM48099.2022.10000622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We observe that current Deep Learning (DL)-based Channel State Information (CSI) encoder and decoder architectures achieve a distortion which is highly channel-dependent. To exploit this, we propose a novel learning-based variable-rate coding scheme to reduce overheads associated with CSI feedback. To that end, we propose an architecture which combines (a) training an efficient predictor for the distortion rate tradeoffs achievable for a given channel, and (b) optimization of a decision logic which allocates rates based on the predicted distortion. We evaluate our approach on various wireless channel datasets including the 3GPP 3D channel model and COST2100 with Massive MIMO channel model, and show significant potential reductions of up to 20% in the CSI feedback overhead.\",\"PeriodicalId\":313199,\"journal\":{\"name\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM48099.2022.10000622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM48099.2022.10000622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们观察到当前基于深度学习(DL)的信道状态信息(CSI)编码器和解码器架构实现了高度依赖信道的失真。为了利用这一点,我们提出了一种新的基于学习的可变速率编码方案,以减少与CSI反馈相关的开销。为此,我们提出了一种架构,该架构结合了(a)训练一个有效的预测器,用于给定信道可实现的失真率权衡,以及(b)优化基于预测失真分配速率的决策逻辑。我们在各种无线信道数据集(包括3GPP 3D信道模型和COST2100与Massive MIMO信道模型)上评估了我们的方法,并显示出CSI反馈开销显著降低高达20%的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Variable-Rate Codes for CSI Feedback
We observe that current Deep Learning (DL)-based Channel State Information (CSI) encoder and decoder architectures achieve a distortion which is highly channel-dependent. To exploit this, we propose a novel learning-based variable-rate coding scheme to reduce overheads associated with CSI feedback. To that end, we propose an architecture which combines (a) training an efficient predictor for the distortion rate tradeoffs achievable for a given channel, and (b) optimization of a decision logic which allocates rates based on the predicted distortion. We evaluate our approach on various wireless channel datasets including the 3GPP 3D channel model and COST2100 with Massive MIMO channel model, and show significant potential reductions of up to 20% in the CSI feedback overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信