高分辨率图像分类的多模态方法

Ryan N. Givens, K. Walli, M. Eismann
{"title":"高分辨率图像分类的多模态方法","authors":"Ryan N. Givens, K. Walli, M. Eismann","doi":"10.1109/AIPR.2013.6749322","DOIUrl":null,"url":null,"abstract":"As the collection of multiple modalities over a single region of interest becomes more common, users are provided with the capability to better overcome limitations of one data type by using the strengths of another. Often, when working only with hyperspectral imagery, scene classification is limited both by the generally lower spatial resolution of the hyperspectral imagery as well as the inability to distinguish classes which are spectrally similar, like asphalt roofing material and road asphalt. This paper will present and demonstrate a method to determine pure pixels in hyperspectral imagery by taking advantage of higher spatial resolution information available in color imagery fused with LIDAR return strength and elevation data. In return, the spectral information gained from hyperspectral imagery will then be used to perform image classification at the higher resolution of the color image. The result is a fully automated process for pure pixel determination and high resolution image classification.","PeriodicalId":435620,"journal":{"name":"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A multimodal approach to high resolution image classification\",\"authors\":\"Ryan N. Givens, K. Walli, M. Eismann\",\"doi\":\"10.1109/AIPR.2013.6749322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the collection of multiple modalities over a single region of interest becomes more common, users are provided with the capability to better overcome limitations of one data type by using the strengths of another. Often, when working only with hyperspectral imagery, scene classification is limited both by the generally lower spatial resolution of the hyperspectral imagery as well as the inability to distinguish classes which are spectrally similar, like asphalt roofing material and road asphalt. This paper will present and demonstrate a method to determine pure pixels in hyperspectral imagery by taking advantage of higher spatial resolution information available in color imagery fused with LIDAR return strength and elevation data. In return, the spectral information gained from hyperspectral imagery will then be used to perform image classification at the higher resolution of the color image. The result is a fully automated process for pure pixel determination and high resolution image classification.\",\"PeriodicalId\":435620,\"journal\":{\"name\":\"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2013.6749322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2013.6749322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着在单个感兴趣的区域上收集多种模式变得越来越普遍,用户可以通过使用另一种数据类型的优势来更好地克服一种数据类型的限制。通常,当仅使用高光谱图像时,场景分类受到高光谱图像的空间分辨率普遍较低以及无法区分光谱相似的类别(如沥青屋顶材料和道路沥青)的限制。本文将介绍并演示一种确定高光谱图像中纯像素的方法,该方法利用融合了激光雷达回波强度和高程数据的彩色图像中可用的更高空间分辨率信息。反过来,从高光谱图像中获得的光谱信息将用于在彩色图像的更高分辨率下执行图像分类。结果是一个完全自动化的过程,用于纯像素确定和高分辨率图像分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multimodal approach to high resolution image classification
As the collection of multiple modalities over a single region of interest becomes more common, users are provided with the capability to better overcome limitations of one data type by using the strengths of another. Often, when working only with hyperspectral imagery, scene classification is limited both by the generally lower spatial resolution of the hyperspectral imagery as well as the inability to distinguish classes which are spectrally similar, like asphalt roofing material and road asphalt. This paper will present and demonstrate a method to determine pure pixels in hyperspectral imagery by taking advantage of higher spatial resolution information available in color imagery fused with LIDAR return strength and elevation data. In return, the spectral information gained from hyperspectral imagery will then be used to perform image classification at the higher resolution of the color image. The result is a fully automated process for pure pixel determination and high resolution image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信