{"title":"投资组合选择中不确定性处理的预期随机多目标优化","authors":"Carlos R. B. Azevedo, F. V. Zuben","doi":"10.1109/CEC.2013.6557566","DOIUrl":null,"url":null,"abstract":"An anticipatory stochastic multi-objective model based on S-Metric maximization is proposed. The environment is assumed to be noisy and time-varying. This raises the question of how to incorporate anticipation in metaheuristics such that the Pareto optimal solutions can reflect the uncertainty about the subsequent environments. A principled anticipatory learning method for tracking the dynamics of the objective vectors is then proposed so that the estimated S-Metric contributions of each solution can integrate the underlying stochastic uncertainty. The proposal is assessed for minimum holding, cardinality constrained portfolio selection, using real-world stock data. Preliminary results suggest that, by taking into account the underlying uncertainty in the predictive knowledge provided by a Kalman filter, we were able to reduce the sum of squared errors prediction of the portfolios ex-post return and risk estimation in out-of-sample investment environments.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Anticipatory Stochastic Multi-Objective Optimization for uncertainty handling in portfolio selection\",\"authors\":\"Carlos R. B. Azevedo, F. V. Zuben\",\"doi\":\"10.1109/CEC.2013.6557566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An anticipatory stochastic multi-objective model based on S-Metric maximization is proposed. The environment is assumed to be noisy and time-varying. This raises the question of how to incorporate anticipation in metaheuristics such that the Pareto optimal solutions can reflect the uncertainty about the subsequent environments. A principled anticipatory learning method for tracking the dynamics of the objective vectors is then proposed so that the estimated S-Metric contributions of each solution can integrate the underlying stochastic uncertainty. The proposal is assessed for minimum holding, cardinality constrained portfolio selection, using real-world stock data. Preliminary results suggest that, by taking into account the underlying uncertainty in the predictive knowledge provided by a Kalman filter, we were able to reduce the sum of squared errors prediction of the portfolios ex-post return and risk estimation in out-of-sample investment environments.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anticipatory Stochastic Multi-Objective Optimization for uncertainty handling in portfolio selection
An anticipatory stochastic multi-objective model based on S-Metric maximization is proposed. The environment is assumed to be noisy and time-varying. This raises the question of how to incorporate anticipation in metaheuristics such that the Pareto optimal solutions can reflect the uncertainty about the subsequent environments. A principled anticipatory learning method for tracking the dynamics of the objective vectors is then proposed so that the estimated S-Metric contributions of each solution can integrate the underlying stochastic uncertainty. The proposal is assessed for minimum holding, cardinality constrained portfolio selection, using real-world stock data. Preliminary results suggest that, by taking into account the underlying uncertainty in the predictive knowledge provided by a Kalman filter, we were able to reduce the sum of squared errors prediction of the portfolios ex-post return and risk estimation in out-of-sample investment environments.