{"title":"利用地理参考社区提供的图片集进行近似值传感","authors":"Daniel Leung, S. Newsam","doi":"10.1145/1629890.1629903","DOIUrl":null,"url":null,"abstract":"Volunteered geographic information such as that available in blogs, wikis, social networking sites, and community contributed photo collections is enabling new applications. This work investigates the use of georeferenced images from a popular photo sharing site for proximate sensing. In particular, we use computer vision and machine learning techniques to perform land cover classification based on the content of the georeferenced images. We evaluate the results using a ground truth dataset from the National Land Cover Database. We demonstrate that our approach can achieve upwards of 75% classification accuracy in a completely automated fashion.","PeriodicalId":107369,"journal":{"name":"Workshop on Location-based Social Networks","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Proximate sensing using georeferenced community contributed photo collections\",\"authors\":\"Daniel Leung, S. Newsam\",\"doi\":\"10.1145/1629890.1629903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volunteered geographic information such as that available in blogs, wikis, social networking sites, and community contributed photo collections is enabling new applications. This work investigates the use of georeferenced images from a popular photo sharing site for proximate sensing. In particular, we use computer vision and machine learning techniques to perform land cover classification based on the content of the georeferenced images. We evaluate the results using a ground truth dataset from the National Land Cover Database. We demonstrate that our approach can achieve upwards of 75% classification accuracy in a completely automated fashion.\",\"PeriodicalId\":107369,\"journal\":{\"name\":\"Workshop on Location-based Social Networks\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Location-based Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629890.1629903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Location-based Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629890.1629903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proximate sensing using georeferenced community contributed photo collections
Volunteered geographic information such as that available in blogs, wikis, social networking sites, and community contributed photo collections is enabling new applications. This work investigates the use of georeferenced images from a popular photo sharing site for proximate sensing. In particular, we use computer vision and machine learning techniques to perform land cover classification based on the content of the georeferenced images. We evaluate the results using a ground truth dataset from the National Land Cover Database. We demonstrate that our approach can achieve upwards of 75% classification accuracy in a completely automated fashion.