一种用于计算机生成图像检测的混合异常-集成模型

C. S. Sychandran, R. Shreelekshmi
{"title":"一种用于计算机生成图像检测的混合异常-集成模型","authors":"C. S. Sychandran, R. Shreelekshmi","doi":"10.1109/IICAIET55139.2022.9936738","DOIUrl":null,"url":null,"abstract":"Digital images play a vital role in digital communication due to their applications in various domains like games, movies, and medical and legal spheres. Entities fabricate content through computer-generated images, which causes severe adverse consequences. We propose a novel hybrid Xception-Ensemble approach for distinguishing computer-generated images using the depthwise separable convolution of the Xception architecture. We use depthwise separable convolution and the parameters transferred from the pre-trained ImageNet weights to distinguish the features in computer-generated images with ensemble average learning for efficient classification. The accuracy of the proposed system is better than that of state of the art systems on DSTok, Columbia PRCG and Rahmouni datasets.","PeriodicalId":142482,"journal":{"name":"2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hybrid Xception-Ensemble model for the detection of Computer Generated images\",\"authors\":\"C. S. Sychandran, R. Shreelekshmi\",\"doi\":\"10.1109/IICAIET55139.2022.9936738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital images play a vital role in digital communication due to their applications in various domains like games, movies, and medical and legal spheres. Entities fabricate content through computer-generated images, which causes severe adverse consequences. We propose a novel hybrid Xception-Ensemble approach for distinguishing computer-generated images using the depthwise separable convolution of the Xception architecture. We use depthwise separable convolution and the parameters transferred from the pre-trained ImageNet weights to distinguish the features in computer-generated images with ensemble average learning for efficient classification. The accuracy of the proposed system is better than that of state of the art systems on DSTok, Columbia PRCG and Rahmouni datasets.\",\"PeriodicalId\":142482,\"journal\":{\"name\":\"2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICAIET55139.2022.9936738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET55139.2022.9936738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数字图像在数字通信中发挥着至关重要的作用,因为它们在游戏、电影、医疗和法律领域等各个领域都有应用。实体通过计算机生成的图像来制造内容,这会造成严重的不良后果。我们提出了一种新的混合异常集成方法,用于使用异常架构的深度可分离卷积来区分计算机生成的图像。我们使用深度可分离卷积和从预训练ImageNet权重转移的参数来区分计算机生成图像中的特征,并使用集成平均学习进行有效分类。所提出的系统的准确性优于DSTok,哥伦比亚PRCG和Rahmouni数据集上最先进的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid Xception-Ensemble model for the detection of Computer Generated images
Digital images play a vital role in digital communication due to their applications in various domains like games, movies, and medical and legal spheres. Entities fabricate content through computer-generated images, which causes severe adverse consequences. We propose a novel hybrid Xception-Ensemble approach for distinguishing computer-generated images using the depthwise separable convolution of the Xception architecture. We use depthwise separable convolution and the parameters transferred from the pre-trained ImageNet weights to distinguish the features in computer-generated images with ensemble average learning for efficient classification. The accuracy of the proposed system is better than that of state of the art systems on DSTok, Columbia PRCG and Rahmouni datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信