基于参考的图像超分辨率双变分自编码器

Mengyao Yang, Junpeng Qi
{"title":"基于参考的图像超分辨率双变分自编码器","authors":"Mengyao Yang, Junpeng Qi","doi":"10.1109/CCCI52664.2021.9583193","DOIUrl":null,"url":null,"abstract":"Due to severe information loss of low-resolution images, the development of single-image super-resolution methods is limited. Recently, the reference-based image super-resolution methods, which super-resolve the low-resolution inputs with the guidance of high-resolution reference images are emerging. In this paper, we design a Dual-Variational AutoEncoder (DVAE) for reference-based image super-resolution task, which can learn the high-frequency information and latent distribution of the high-resolution reference images as priors to improve the restoration quality of image super-resolution. Moreover, a hierarchical variational autoencoder strategy is exploited to further study latent space. Complementary to a quantitative evaluation, we demonstrate the effectiveness of the proposed approach.","PeriodicalId":136382,"journal":{"name":"2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reference-based Image Super-Resolution by Dual-Variational AutoEncoder\",\"authors\":\"Mengyao Yang, Junpeng Qi\",\"doi\":\"10.1109/CCCI52664.2021.9583193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to severe information loss of low-resolution images, the development of single-image super-resolution methods is limited. Recently, the reference-based image super-resolution methods, which super-resolve the low-resolution inputs with the guidance of high-resolution reference images are emerging. In this paper, we design a Dual-Variational AutoEncoder (DVAE) for reference-based image super-resolution task, which can learn the high-frequency information and latent distribution of the high-resolution reference images as priors to improve the restoration quality of image super-resolution. Moreover, a hierarchical variational autoencoder strategy is exploited to further study latent space. Complementary to a quantitative evaluation, we demonstrate the effectiveness of the proposed approach.\",\"PeriodicalId\":136382,\"journal\":{\"name\":\"2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCCI52664.2021.9583193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCI52664.2021.9583193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于低分辨率图像严重的信息丢失,限制了单图像超分辨率方法的发展。近年来,基于参考图像的超分辨率方法应运而生,该方法在高分辨率参考图像的引导下对低分辨率输入进行超分辨率处理。本文设计了一种基于参考图像超分辨率任务的双变分自动编码器(Dual-Variational AutoEncoder, DVAE),它可以预先学习高分辨率参考图像的高频信息和潜在分布,从而提高图像超分辨率的恢复质量。此外,利用层次变分自编码器策略进一步研究潜在空间。作为定量评估的补充,我们证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reference-based Image Super-Resolution by Dual-Variational AutoEncoder
Due to severe information loss of low-resolution images, the development of single-image super-resolution methods is limited. Recently, the reference-based image super-resolution methods, which super-resolve the low-resolution inputs with the guidance of high-resolution reference images are emerging. In this paper, we design a Dual-Variational AutoEncoder (DVAE) for reference-based image super-resolution task, which can learn the high-frequency information and latent distribution of the high-resolution reference images as priors to improve the restoration quality of image super-resolution. Moreover, a hierarchical variational autoencoder strategy is exploited to further study latent space. Complementary to a quantitative evaluation, we demonstrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信